(二)氧化呼吸鏈
1.NADH氧化呼吸鏈 人體內大多數脫氫酶都以NAD+作輔酶,在脫氫酶催化下底物SH2脫下的氫交給NAD+生成NADH+H+,在NADH脫氫酶作用下,NADH+H+將兩個氫原子傳遞給FMN生成FMNH2,再將氫傳遞至CoQ生成CoQH2,此時兩個氫原子解離成2H++2e,2H+游離于介質中,2e經Cyt b、c1、c、aa3傳遞,最后將2e傳遞給1/2O2,生成O2-,O2與介質中游離的2H+結合生成水,綜合上述傳遞過程可用圖6-6表示。
SH2:作用物;(Fe-S):鐵硫中心;Cyt:細胞色素
2.琥珀酸氧化呼吸鏈 琥珀酸在琥珀酸脫氫酶作用下脫氫生成延胡索酸,FAD接受兩個氫原子生成FADH2,然后再將氫傳遞給CoQ,生成CoQH2,此后的傳遞和NADH氧化呼吸鏈相同,整個傳遞過程可用圖6-7表示。
(Fe-S):鐵硫中心:b:琥珀酸脫氫酶復合體的細胞色素
3.線粒體氧化呼吸鏈總結 線粒體中物質代謝會生成大量的NADH+H+和FADH2-它們可來自丙酮酸氧化脫羧、三羧酸循環、脂肪酸的β-氧化和L-谷氨酸的氧化脫氨等反應,現將某些重要底物氧化時的呼吸鏈總結于圖6-8。
*ETF:電子傳遞黃素蛋白,輔基為FAD
三、胞漿中NADH的轉移
體內很多物質氧化分解產生NADH,反應發生在線粒體內,則產生的NADH可直接通過呼吸鏈進行氧化磷酸化,但亦有不少反應是在線粒體外進行的,如3-磷酸甘油醛脫氫反應,乳酸脫氫反應及氨基酸聯合脫氨基反應等等。由于所產生的NADH存在于線粒體外,而真核細胞中,NADH不能自由通過線粒體內膜,因此,必須借助某些能自由通過線粒體內膜的物質才能被轉入線粒體,這就是所謂穿梭機制,體內主要有兩種穿梭機制。
1.α磷酸甘油穿梭(glycerolα-phosphate shuttle)
該穿梭機制主要在腦及骨骼肌中,它是借助于α-磷酸甘油與磷酸二羥丙酮之間的氧化還原轉移還原當量,使線粒體外來自NADH的還原當量進入線粒體的呼吸鏈氧化,具體過程如圖6-9。
圖6-9 α磷酸甘油穿梭
當胞液中NADH濃度升高時,胞液中的磷酸二羥丙酮首先被NADH還原成α磷酸甘油(3-磷酸甘油),反應由甘油磷酸脫氫酶(輔酶為NAD+)催化,生成的α磷酸甘油可再經位于線粒體內膜近外側部的甘油磷酸脫氫酶催化氧化生成磷酸二羥丙酮。線粒體與胞液中的甘油磷酸脫氫酶為同工酶,兩者不同在于線粒體內的酶是以FAD為輔基的脫氫酶,而不是NADH+,FAD所接受的質子、電子可直接經泛醌、復合體Ⅲ、Ⅳ傳遞到氧,這樣線粒體外的還原當量就被轉運到線粒體氧化了,但通過這種穿梭機制果只能生成2分子ATP而不是3分子ATP。
2.蘋果酸,天冬氨酸穿梭(malate aspartate shuttle):
這種穿梭機制主要在肝、腎、心中發揮作用,其穿梭機制比較復雜,不僅需借助蘋果酸、草酸乙酸的氧化還原,而且還要借助α酮酸與氨基酸之間的轉換,才能使胞液中來的NADH的還原當量轉移進入線粒體氧化,具體過程如圖6-10。
圖6-10 蘋果酸天冬氨酸穿梭
GOT:谷草轉氨酸;MDH:蘋果酸脫氫酶
當胞液中NADH濃度升高時,首先還原草酰乙酸成為蘋果酸,此反應由蘋果酸脫氫酶催化,胞液中增多的蘋果酸可通過內膜上的二羧酸載體系統與線粒體內的α酮戊二酸交換;進入線粒體的蘋果酸,經蘋果酸脫氫酶催化又氧化生成草酰乙酸并釋出NADH,還原當量從復合體I進入呼吸鏈經CoQ、復合體Ⅲ、Ⅳ傳遞,最image/005061360后給氧,所以仍可產生3分子ATP,與在線粒體內產生的NADH氧化相同。與此同時線粒體內的α酮戊二酸由于與蘋果酸交換而減少,需要補充,于是在轉氨酶作用下由谷氨酸與草酰乙酸進行轉氨基反應,生成α酮戊二酸和天冬氨酸,天冬氨酸借線粒體膜上的谷氨酸天冬氨酸載體轉移系統與胞液的谷氨酸交換,從而補充了線粒體內谷氨酸由于轉氨基作用而造成的損失,進入胞液的天冬氨酸再與胞液中α酮戊二酸進行轉氨基,重新又產生草酰乙酸以補充最初的消耗,從而完成整個穿梭過程。
11月28日,中國科學院生物物理研究所孫飛課題組與德國馬普研究所HartmutMichel課題組在國際期刊《德國應用化學》(AngewandteChemieInternationalEdition)雜......
中國科學院生物物理研究所孫飛課題組與德國馬普研究所HartmutMichel課題組在國際期刊《德國應用化學》(AngewandteChemieInternationalEdition)雜志上發表封面文......
《細胞研究》雜志日前發表了一項研究成果,有望推翻教科書上的結論。論文顯示,生物體呼吸鏈中的第4個成員——復合物4的實際結構和科學家歷經多年探究繪制而成的并不一樣。呼吸鏈,顧名思義,與呼吸有關,完成著生......
在“蛋白質機器與生命過程調控”重點專項的支持下,我國科學家突破性地解析了人源呼吸鏈蛋白質復合物最高級的組成形式——超超級復合物(MCI2III2IV2)中高分辨率三維結構和超級復合物(SCI1III2......
2012年,清華大學楊茂君教授研究組就曾在Nature雜志上發文,首次報道了II-型線粒體呼吸鏈復合物I;去年這一研究組又詳細闡釋了豬源呼吸鏈超級復合物I1III2IV1的原子分辨率三維結構;在8月2......
線粒體是細胞的“動力工廠”,而其中呼吸鏈復合物起著重要作用,只是一直以來人們都不知道這些復合物是如何生成的。現在,德國哥廷根的科學家研究表明,新發現的蛋白復合物“MITRAC”是實現這一過程的關鍵。相......
線粒體是細胞的“動力工廠”,而其中呼吸鏈復合物起著重要作用,只是一直以來人們都不知道這些復合物是如何生成的。現在,德國哥廷根的科學家研究表明,新發現的蛋白復合物“MITRAC”是實現這一過程的關鍵。相......
德國科學家成功揭示細胞線粒體呼吸鏈膜蛋白復合物Ⅰ的結構,并發現了分子復合物中的全新能量轉換機制,細胞可通過該機制使用儲存在營養中的能量。相關研究成果發表在7月1日的《科學》雜志網絡版上。有氧呼吸是動植......
封面故事: 呼吸鏈ComplexI的結構被確定ComplexI是呼吸鏈的第一種酶,它通過將NADH和苯醌之間的電子轉移同質子轉位耦合起來,而在線粒體中的細胞能量生產中扮演一個中心角色。這個巨......
呼吸鏈ComplexI的結構被確定ComplexI是呼吸鏈的第一種酶,它通過將NADH和苯醌之間的電子轉移同質子轉位耦合起來,而在線粒體中的細胞能量生產中扮演一個中心角色。這個巨大的復合物是呼吸鏈的最......