有四個步驟,分別是:
1、培養用p32和s35 標記的大腸桿菌,再用此大腸桿菌培養噬菌體。p32用于標記噬菌體蛋白質,s35 用于標記噬菌體DNA。
2、用培養后的p32和s35噬菌體侵染未被標記的的大腸桿菌。
3、培養物離心,分離。
4 、分別對上清液和沉淀物的放射性進行檢測。上清液中有S35,而沉淀中幾乎沒有;沉淀中有P32而上清液中幾乎沒有。
Alfed Hershey和Martha Chase(1952)將宿主大腸桿菌細胞分別放在含放射性同位素35S或32P的培養基中,用35S標記蛋白質,32P標記蛋DNA。宿主細胞在生長過程中就被35S或32P標記上了。然后用T2噬菌體分別感染被35S或32P標記的細菌,并在這些細菌中復制增殖。
宿主菌裂解釋放出很多子代噬菌體,這些子代噬菌體也被標記上35S或32P。然后用分別被35S,或32P標記的噬菌體去感染沒有被放射性同位素標記的宿主菌,然后測定宿主菌細胞帶有的同位素。被35S標記的噬菌體所感染的宿主菌細胞內很少有35S,而大多數35S出現在宿主菌細胞的外面。
也就是說,35S標記的噬菌體蛋白質外殼在感染宿主菌細胞后,并未進入宿主菌細胞內部而是留在細胞外面。被32P標記的噬菌體感染宿主菌細胞后,測定宿主菌的同位素,發現32P主要集中在宿主菌細胞內。所以噬菌體感染宿主菌細胞時進入細胞內的主要是DNA。
8月23日,中國科學院南海海洋研究所熱帶海洋生物資源與生態重點實驗室王曉雪團隊聯合美國哈佛大學醫學院MatthewK.Waldor團隊,發現了溫和噬菌體編碼的新穎的三組分毒素-抗毒素系統,并解析了這一......
CRISPR-Cas系統廣泛存在于細菌和古細菌中,是原核生物的一種適應性免疫系統,用來抵御病毒、質粒等外源核酸的侵入。然而在2013年,有研究人員在ICP1噬菌體中發現了I-F型CRISPR-Cas系......
CRISPR-Cas系統廣泛存在于細菌和古細菌中,是原核生物的一種適應性免疫系統,用來抵御病毒、質粒等外源核酸的侵入。然而在2013年,有研究人員在ICP1噬菌體中發現了I-F型CRISPR-Cas系......
4月26日,噬菌體資源庫建設研討會在京召開。會議由中國科學院微生物研究所主辦,中國普通微生物菌種保藏管理中心和mLife期刊聯合承辦。會上,微生物所所長錢韋闡述了噬菌體庫建設對應對耐藥問題的重要性,希......
近日消息,瑞士和法國科學家攜手,開發出一種芯片上的納米“光鑷”,能以最小光功率捕獲、操縱和識別單個噬菌體,有望加速甚至改變基于噬菌體的療法,治療具有抗生素耐藥性的細菌感染。相關研究論文發表于最新一期《......
噬菌體(Phage)和其他可移動遺傳元件(MGE)對細菌施加了巨大的選擇壓力,作為回應,細菌也發展出了廣泛的防御機制。其中最我們熟知的就是——CRISPR-Cas系統,這是一組在細菌中廣泛存在的RNA......
噬菌體是地球上數量最龐大的生物群體,是原核生物的病毒,對維持地球生態系統的有序運行意義重大。在噬菌體和宿主漫長的競賽中,為抵御噬菌體的入侵,原核生物進化出多種系統進行防御,如限制修飾系統、CRISPR......
噬菌體是地球上數量最龐大的生物群體,是原核生物的病毒,對維持地球生態系統的有序運行意義重大。在噬菌體和宿主漫長的競賽中,為抵御噬菌體的入侵,原核生物進化出多種系統進行防御,如限制修飾系統、CRISPR......
瑞士一項新研究說,通過基因編輯技術等改造一類侵襲細菌的病毒——噬菌體,可以高效殺滅引發尿路感染的細菌,這比抗生素治療更為精準,有助于避免細菌產生耐藥性。每種噬菌體只侵襲特定的目標。瑞士蘇黎世聯邦理工學......
近日,中國科學院大連化學物理研究所生物技術研究部生物分離與界面分子機制研究組(1824組)卿光焱研究員團隊開發了一種超精準內毒素分離材料。該團隊通過“量體裁衣”的材料設計理念,提出了一種基于噬菌體展示......