對于氮化鎵(GaN) 功率放大器,設計師需要考慮非線性操作,包括RF 電流-電壓(I?V) 波形會發生的狀況。優化非線性行為設計的一種方法就是仿真內部I-V 波形。本文將為您介紹:
· I-V 波形的定義
· 功率放大器工作類型
· 內部和外部I?V 波形
· 功率放大器設計的“波形工程”方法
I-V 曲線與I-V 波形:有何不同?
在典型GaN HEMT 放大器應用中,源是接地的,RF 輸入信號應用于整個柵極-源極終端。漏極與負載連接,負載阻抗決定了當RF-AC 輸入信號在最小和最大峰值之間來回擺動時,負載線路來回移動的軌跡。
在之前的介紹中,我們了解了關于I?V 曲線和負載線路的基礎知識,但還有另一種分析設備的非線性行為的方法,即查看設備的I-V 波形--也就是電流和電壓與時間的關系圖,如下面的2 Ghz 輸入RF 信號圖所示。
I?V 波形和I?V 曲線顯示不同的信息。為了展示這種不同,我們利用Keysight ADS 和Modelithics Qorvo GaN 庫 模型(適用于90 W、48 V 的Qorvo GaN 晶體管QPD0060)創建了以下示例。
左圖顯示I?V 電流和電壓波形與時間的關系,其中AB 類偏置Vds = 48 V,Vgs = ?2.5 V(對應右圖中的標記m2)。
右圖顯示Vgs為4.5 V 至0 V 時的I?V 曲線(紅色,基于Vgs 的Ids 與Vds 參數關系)。右側的藍色曲線稱為動態負載線,表示信號完成整個正弦波周期時,漏極一側的電流生成器的動態電流-電壓軌跡。
I-V 波形和功率放大器工作類型
在功率放大器設計中,“類型”用來描述放大器的設計方法。這主要包括輸出信號驅動至預期功率水平時,晶體管的偏置條件和工作模式。如下圖所示,這些模式分別對應A 類、AB 類和B 類功率放大器在標記m2、m3 和m4 所示的靜態電壓-電流點時的晶體管偏置。
您也可以從I-V 波形的角度來考慮這些操作類型。下圖顯示在2 Ghz 基頻條件下A 類、AB 類、B 類和C 類的內部I-V 波形仿真結果。采用Keysight ADS 和適用于QPD0060 的Modelithics Qorvo GaN 庫模型來實施這些仿真。
扫码下载分析测试百科网APP