目前已有多種方法可以將寡核苷酸或短肽固定到固相支持物上。這些方法總體上有兩種,即原位合成(in situ synthesis)與合成點樣兩種。支持物有多種如玻璃片、硅片、聚丙烯膜、硝酸纖維素膜、尼龍膜等,但需經特殊處理。作原位合成的支持物在聚合反應前要先使其表面衍生出羥基或氨基(視所要固定的分子為核酸或寡肽而定)并與保護基建立共價連接;作點樣用的支持物為使其表面帶上正電荷以吸附帶負電荷的探針分子,通常需包被以氨基硅烷或多聚賴氨酸等。
原位合成法主要為光引導聚合技術(Light-directed synthesis),它不僅可用于寡聚核苷酸的合成,也可用于合成寡肽分子。光引導聚合技術是照相平板印刷技術(photolithography)與傳統的核酸、多肽固相合成技術相結合的產物。半導體技術中曾使用照相平板技術法在半導體硅片上制作微型電子線路。固相合成技術是當前多肽、核酸人工合成中普遍使用的方法,技術成熟且已實現自動化。二者的結合為合成高密度核酸探針及短肽陣列提供了一條快捷的途徑。
以合成寡核苷酸探針為例,該技術主要步驟為:首先使支持物羥基化,并用光敏保護基團將其保護起來。每次選取擇適當的蔽光膜(mask)使需要聚合的部位透光,其它部們不透光。這樣,光通過蔽光膜照射到支持物上,受光部位的羥基解保護。因為合成所用的單體分子一端按傳統固相合成方法活化,另一端受光敏保護基的保護,所以發生偶聯的部位反應后仍舊帶有光敏保護基團。因此,每次通過控制蔽光膜的圖案(透光與不透光)決定哪些區域應被活化,以及所用單體的種類和反應次序就可以實現在待定位點合成大量預定序列寡聚體的目的。
基因芯片
該方法的主要優點是可以用很少的步驟合成極其大量的探針陣列。例如,合成 48(65536)個探針的 8 聚體寡核苷酸序列僅需 4 × 8=32 步操作, 8 小時就可以完成。而如果用傳統方法合成然后點樣,那么工作量的巨大將是不可思議的。同時,用該方法合成的探針陣列密度可高達到 106/cm2。不過,盡管該方法看來比較簡單,實際上并非如此。主要原因是,合成反應每步產率比較低,不到 95%。而通常固相合成反應每步的產率在 99% 以上。因此,探針的長度受到了限制。而且由于每步去保護不很徹底,致使雜交信號比較模糊,信噪比降低。為此有人將光引導合成技術與半異體工業所用的光敏抗蝕技術相結合,以酸作為去保護劑,使每步產率增加到 98%。原因是光敏抗蝕劑的解離對照度的依賴是非線性的,當照度達到特定的閾值以上保護劑就會解離。所以,該方法同時也解決了由于蔽光膜透光孔間距離縮小而引起的光衍射問題,有效地提高了聚合點陣的密度。另據報導 ,利用波長更短的物質波如電子射線去除保護可使點陣密度達到 1010/cm2。
除了光引導原位合成技術外,有的公司如美國 Incyte Pharmaceuticals 等使用壓電打印法(Piezoelectric printing)進行原位合成。其裝置與普通的彩色噴墨打印機并無兩樣,所用技術也是常規的固相合成方法。做法是將墨盒中的墨汁分別用四種堿基合成試劑所替代,支持物經過包被后,通過計算機控制噴墨打印機將特定種類的試劑噴灑到預定的區域上。沖洗、去保護、偶聯等則同于一般的固相原位合成技術。如此類推,可以合成出長度為 40 到 50 個堿基的探針,每步產率也較前述方法為高,可達到 99% 以上。
盡管如此,通常原位合成方法仍然比較復雜,除了在基因芯片研究方面享有盛譽的 Affymetrix 等公司使用該技術合成探針外,其它中小型公司大多使用合成點樣法。
后一方法在多聚物的設計方面與前者相似,合成工作用傳統的 DNA 或多肽固相合成儀以完成,只是合成后用特殊的自動化微量點樣裝置將其以比較高的密度涂布于硝酸纖維膜、尼龍膜或玻片上。支持物應事先進行特定處理,例如包被以帶正電荷的多聚賴酸或氨基硅烷。現在已有比較成型的點樣裝置出售,如美國 Biodot 公司的點膜產品以及 Cartesian Technologies 公司的 PixSys NQ/PA 系列產品。前者產生的點陣密度可以達到 400/cm2,后者則可達到 2500/cm2。