無論是相對定量還是絕對定量方法,DIA很好地克服了DDA鳥槍法和SRM目標監測的種種不足, 在定量蛋白質組學中具有良好的應用前景。然而,目前DIA 方法的循環時間仍然較長,只能與納流液相聯用,并使用較長的梯度以獲得足夠的色譜峰寬,限制了DIA 的應用范圍。這也是DIA 技術下一步需要解決的問題。
圖7WiSIM-DIA 與Full MS-DIA 原理[57] :(A) WiSIM-DIA 采集原理; (B) Full MS-DIA 采集原理
Fig. 7Schematic elucidation of wide isolation-SIM (WiSIM)-DIA and Full MS-DIA[57] : (A) Workflow of WiSIM-DIA; (B) Workflow of Full MS-DIA
5 總結與展望
基于報告離子定量的同重同位素標記、目標離子監測和數據非依賴采集已成為定量蛋白質組學的主要技術手段,表1 總結和比較了這3 種方法的原理和異同。定量蛋白質組學的飛速發展為質譜技術帶來挑戰,基于穩定同位素標記的相對定量和基于SRM 的絕對定量都面臨著復雜基質的嚴重干擾和通量不足等局限(表1)。而近來一系列高分辨質譜新技術的發展為解決這些問題帶來希望。其中,同步母離子選擇和質量虧損標記有效解決了相對定量的干擾和通量問題; 平行反應監測及多重累積技術提高了SRM 的選擇性,成為絕對定量的新途徑; 數據非依賴性采集兼具DDA 與SRM 的優勢,多重累積和三合一質譜技術使DIA 的掃描步長進一步縮小,能更有效地使DIA 技術應用于高通量的定量蛋白質組學。未來,這些新技術將逐漸取代傳統質譜技術,越來越多地應用到定量蛋白質組學中,為解決諸如蛋白質相互作用、臨床標志物研究等領域最棘手的問題帶來新的手段和突破。
表1 定量蛋白質組學主要技術的原理與進展
Table 1 Principle and progress of quantitative proteomic methods
References
1 Ong S E, Mann M. Nat. Chem. Biol. , 2005, 1(5): 252-262
2 Veenstra T D. J. Chromatogr. B, 2007, 847(1): 3-11
3 ZHOU Yuan, SHAN Yi -Chu, ZHANG Li -Hua, ZHANG Yu -Kui. Chinese Journal of Chromatography, 2013, 31(6):496-502
周愿, 單亦初, 張麗華, 張玉奎. 色譜, 2013, 31(6): 496-502
4 Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Anal. Bioanal. Chem. , 2007, 389(4): 1017-1031
5 ZHU Jin -Lei, ZHANG Kai, HE Xi -Wen, ZHANG Yu -Kui. Chinese J. Anal. Chem. , 2010, 38(3): 434-441
朱金蕾, 張鍇, 何錫文, 張玉奎. 分析化學, 2010, 38(3): 434-441
6 Lange V, Picotti P, Domon B, Aebersold R. Mol. Syst. Biol. , 2008, 4: 222
7 Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Mol. Cell. Proteomics, 2002, 1(5):376-386
8 Capelo J L, Carreira R J, Fernandes L, Lodeiro C, Santos H M, Simal -Gandara J. Talanta, 2010, 80(4): 1476-1486
9 Boersema P J, Raijmakers R, Lemeer S, Mohammed S, Heck A J. Nat. Protoc. , 2009, 4(4): 484-494
10 Koehler C J, Strozynski M, Kozielski F, Treumann A, Thiede B. J. Proteome Res. , 2009, 8(9): 4333-4341
11 Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed A K, Hamon C. Anal. Chem. , 2003, 75(8): 1895-1904
12 Ross PL, Huang Y N, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet -Jones M, He F, Jacobson A, Pappin DJ. Mol. Cell. Proteomics, 2004,3(12): 1154-1169
13 Karp N A, Huber W, Sadowski P G, Charles P D, Hester S V, Lilley K S. Mol. Cell. Proteomics, 2010, 9(9):1885-1897
14 Ow S Y, Salim M, Noirel J, Evans C, Rehman I, Wright P C. J. Proteome Res. , 2009, 8(11): 5347-5355
15 Ting L, Rad R, Gygi S P, Haas W. Nat. Methods, 2011, 8(11): 937-940
16 ZHAO Yan, YING Wan -Tao, QIAN Xiao -Hong. Chem. Life, 2008, 28(2): 210-213
趙焱, 應萬濤, 錢小紅. 生命的化學, 2008, 28(2): 210-213
17 Sherman J, McKay MJ, Ashman K, Molloy MP. Proteomics, 2009, 9(5): 1120-1123
18 Abbatiello SE, Mani DR, Keshishian H, Carr SA. Clin. Chem. , 2010, 56(2): 291-305
19 Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V, Picotti P, Aebersold R, Huhmer A, Domon B. Mol. Cell. Proteomics, 2011, 10(2): M110. 002931
20 Cima I, Schiess R, Wild P, Kaelin M, Sch俟ffler P, Lange V, Picotti P, Ossola R, Templeton A, Schubert O, Fuchs T, Leippold T, Wyler S, Zehetner J, Jochum W, Buhmann J, Cerny T, Moch H, Gillessen S, Aebersold R, Krek W. Proc.Natl. Acad. Sci. USA, 2011, 108(8): 3342-3347
21 Picotti P, Bodenmiller B, Mueller L N, Domon B, Aebersold R. Cell, 2009, 138(4): 795-806
22 Pichler P, Kocher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K. Anal. Chem. , 2010, 82(15):6549-6558
23 Thingholm T E, Palmisano G, Kjeldsen F, Larsen M R. J. Proteome Res. , 2010, 9(8): 4045-4052
24 McAlister G C, Nusinow D P, Jedrychowski M P, W俟hr M, Huttlin E L, Erickson B K, Rad R, Haas W, Gygi S P. Anal.Chem. , 2014, 86(14): 7150-7158
25 Wuhr M, Haas W, McAlister G C, Peshkin L, Rad R, Kirschner M W, Gygi S P. Anal. Chem. , 2012, 84(21):9214-9221
26 Wenger C D, Lee M V, Hebert A S, McAlister G C, Phanstiel D H, Westphall M S, Coon J J. Nat. Methods, 2011,8(11): 933-935
27 Goeringer D E, Asano K G, McLuckey S A. Anal. Chem. , 1994, 66(3): 313-318
28 Viner R, Bomgarden R, Blank M, Rogers J. 61st ASMS, 2013, Poster W617
29 Blank M, Bomgarden R, Rogers J, Jacobs R, Fong J, Puri N, Zabrouskov V, Viner R. 61st ASMS, 2013, Poster Th449
30 Weekes M P, Tomasec P, Huttlin E L, Fielding C A, Nusinow D, Stanton R J, Wang E C, Aicheler R, Murrell I,Wilkinson G W, Lehner P J, Gygi S P. Cell, 2014, 157(6): 1460-1472
31 Dephoure N, Gygi S P. Sci. Signal, 2012, 5(217): rs2
32 Werner T, Becher I, Sweetman G, Doce C, Savitski M M, Bantscheff M. Anal. Chem. , 2012, 84(16): 7188-7194
33 McAlister G C, Huttlin E L, Haas W, Ting L, Jedrychowski M P, Rogers J C, Kuhn K, Pike I, Grothe R A, Blethrow J D, Gygi S P. Anal. Chem. , 2012, 84(17): 7469-7478
34 Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski M M. Anal. Chem. , 2014, 86(7): 3594-3601
35 Gallien S, Duriez E, Demeure K, Domon B. J. Proteomics, 2013, 9(81): 148-158
36 Karlsson C, Malmstrom L, Aebersold R, Malmstrom J. Nat. Commun. , 2012, 3: 1301
37 Gallart -Ayala H, Moyano E, Galceran M T. J. Chromatogr. A, 2008, 1208(1 -2): 182-188
38 Mart侏nez -Villalba A, Moyano E, Martins C P, Galceran M T. Anal. Bioanal. Chem. , 2010, 397(7): 2893-2901
39 Fortin T, Salvador A, Charrier J P, Lenz C, Bettsworth F, Lacoux X, Choquet -Kastylevsky G, Lemoine J. Anal. Chem. ,2009, 81(22): 9343-9352
40 Peterson A C, Russell J D, Bailey D J, Westphall M S, Coon J J. Mol. Cell. Proteomics, 2012, 11(11): 1475-1488
41 Schiffmann C, Hansen R, Baumann S, Kublik A, Nielsen P H, Adrian L, von Bergen M, Jehmlich N, Seifert J. Anal.Bioanal. Chem. , 2014, 406(1): 283-291
42 Gallien S, Duriez E, Demeure K, Domon B. J. Proteomics, 2013, 81: 148-158
43 Tsuchiya H, Tanaka K, Saeki Y. Biochem. Biophys. Res. Commun. , 2013, 436(2): 223-229
44 Tang H, Fang H, Yin E, Brasier A R, Sowers L C, Zhang K. Anal. Chem. , 2014, 86(11): 5526-5534
45 Gallien S, Bourmaud A, Kim S Y, Domon B. J. Proteomics, 2014, 100: 147-159
46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723
47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566
48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45
49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012,11(6): O111. 016717
50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013,13(8): 1247-1256
51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253
52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R,Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245
53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev. , 2013: 10. 1002/ mas. 21400
54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746
55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem. , 2013, 85(24):11710-11714
56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targe -ted Protein Quantification Using WiSIM -DIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737
57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem. , 2014, 42(12): 1750-1758
張偉, Reiko Kiyonami, 江崢, 陳偉. 分析化學, 2014, 42(12): 1750-1758
58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res. , 2014, doi: 10. 1021/ pr5003017
Progress in Mass Spectrometry Acquisition Approach for Quantitative Proteomics
ZHANG Wei*
(Thermo Fisher Scientific, Shanghai 201206, China)
Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the in -depth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/ capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection ( SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition(DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.
Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review
(Received 10 September 2014; accepted 18 October 2014)