10.拉曼光譜用于分析的優點和缺點
①拉曼光譜用于分析的優點
拉曼光譜的分析方法不需要對樣品進行前處理,也沒有樣品的制備過程,避免了一些誤差的產生,并且在分析過程中操作簡便,測定時間短,靈敏度高等優點
②拉曼光譜用于分析的不足
(1)拉曼散射面積;
(2)不同振動峰重疊和拉曼散射強度容易受光學系統參數等因素的影響;
(3)熒光現象對傅立葉變換拉曼光譜分析的干擾;
(4)在進行傅立葉變換光譜分析時,常出現曲線的非線性的問題;
(5)任何一物質的引入都會對被測體體系帶來某種程度的污染,這等于引入了一些誤差的可能性,會對分析的結果產生一定的影響;
11.新進展及發展前景
十多年來,雖然已經有一些關于在高真空體系、大氣下、以及固/液體系(電化學體系)中研究單晶金屬體系表面拉曼光譜的報道,但直至近年光滑單晶電極體系的SERS研究才取得了重要進展Bryant等記錄了以單分子層吸附在光滑Pt電極表面的噻吩拉曼譜,Furtak等使用具有Kretchmann光學構型的ATR電解池并利用表面等離子體增強效應,獲得了吸附物種在平滑的Ag(111)單晶面上的弱SERS信號,由于拉曼光譜系統的檢測靈敏度的限制,所獲得的表面信號極弱,無法進行較為詳細的研究.Otto小組和Futamata小組分別成功地采用Otto光學構造的ATR電解池,利用表面等離子激元增強方法獲得了光滑單晶電極上相對較強的表面Raman信號,前者發現不同的Cu單晶電極表面的增強因子有所不同,有較高指數或臺階的晶面的信號明顯增強。Futamata等甚至可在Pt和Ni金屬的單晶表面上觀察到SERS信號, 計算表明其表面增強因子為1~2個數量級。目前,可用于單晶表面電極體系的SERS研究還局限于Raman散射截面很大的極少數分子,尚需進一步改進和尋找實驗方法,以拓寬可研究的分子體系.若能成功地將各種單晶表面電極的SERS信號與經過不同粗糙方式處理的電極表面信號進行系統地比較和研究, 不但對定量研究SERS機理和區分不同增強機制的貢獻大有益處, 而且將有利于提出正確和可靠的拉曼光譜的表面選擇定律.
隨著納米科學技術的迅速發展, 各類制備不同納米顆粒以及二維有序納米圖案的技術和方法將日益成熟, 人們可以比較方便地在理論的指導下,尋找在過渡金屬上產生強SERS效應的最佳實驗條件.這些突破無疑將為拉曼光譜技術廣泛應用于各種過渡金屬電極和單晶電極體系的研究開創新局面。總之,通過摸索合適的表面處理方法并采用新一代高靈敏度的拉曼譜儀,可將拉曼光譜研究拓展至一系列重要的過渡金屬和半導體體系,進而將該技術發展成為一個適用性廣、研究能力強的表面(界面)譜學工具,同時,推動有關表面(界面)譜學理論的發展.
各種相關的檢測和研究方法也很可能得到較迅速的發展和提高,在提高檢測靈敏度的基礎上,人們已不滿足于僅僅檢測電極表面物種, 而是注重通過提高其檢測分辨率(包括:譜帶分辨、時間分辨和空間分辨)來研究電化學界面結構和表面分子的細節和動態過程。今后的主要研究內容可能從穩態的界面結構和表面吸附逐漸擴展至其反應的動態過程并深入至分子內部的各基團,揭示分子水平上的化學反應(吸附)動力學規律,研究表面物種間以及同電解質離子或溶劑分子間的弱相互作用等,例如,將電化學暫態技術(時間-電流法、超高速循環伏安法)同時間分辨光譜技術結合, 開展時間分辨為ms或μs級的研究。采用SERS同電化學暫態技術結合進行的時間分辨實驗可檢測鑒別電化學反應的產物及中間物,新一代的增強型電荷耦合列陣檢測器(ICCD)和新一代的拉曼譜儀(如:傅立葉變換拉曼儀和哈德瑪變換儀)的推出,都將為時間分辨拉曼光譜在電化學的研究提供新手段。最近,我們利用電化學本身的優勢,提出的電位平均表面增強拉曼散射he(Potential Averaged SERS,PASERS)新方法,通過在Ag和Pt微電極上采集在不同調制電位頻率下的PASERS譜并進行解譜,可在不具備從事時間分辨研究條件的儀器上進行時間分辨為μs級的電化學時間分辨拉曼光譜研究。拉曼光譜研究的另一發展方向是采用激光拉曼光譜微區顯微技術,開展空間分辨研究并進而開展電極表面微區結構與行為的研究。Fujishima等人利用共焦顯微拉曼系統和SERS技術發展了表面增強拉曼成像技術并研究了SERS活性銀表面吸附物以及自組裝膜的SERI圖象,該技術和具有三維空間分辨的共焦顯微Raman光譜方法在研究導電高聚物、L-B膜和自組裝膜電極以及電極鈍化膜和微區腐蝕等方面將發揮其重要作用。突破光學衍射極限的、空間分辨值達數十納米的近場光學Raman顯微技術則很可能異軍突起。為多方位獲得詳細信息,達到取長補短的目的,開展Raman光譜與其他先進技術聯用的研究勢在必行。光導纖維技術可在聯用耦合方面發揮關鍵作用,如,將表面Raman光譜技術與掃描探針顯微技術進行實時聯用,針對性的聯用技術可望較全面地研究復雜體系并準確地解釋疑難的實驗現象,為各種理論模型和表面選則定律提供實驗數據,促進譜學電化學的有關理論和表面量子化學理論的發展。可以預見,在不久的將來,隨著表面檢測技術的快速發展,SERS及其應用于電化學的研究將進入一個新的階段。
紅外光譜的原理及應用
(一)紅外吸收光譜的定義及產生
分子的振動能量比轉動能量大,當發生振動能級躍遷時,不可避免地伴隨有轉動能級的躍遷,所以無法測量純粹的振動光譜,而只能得到分子的振動-轉動光譜,這種光譜稱為紅外吸收光譜
紅外吸收光譜也是一種分子吸收光譜。當樣品受到頻率連續變化的紅外光照射時,分子吸收了某些頻率的輻射并由其振動或轉動運動引起偶極矩的凈變化,產生分子振動和轉動能級從基態到激發態的躍遷,使相應于這些吸收區域的透射光強度減弱。記錄紅外光的百分透射比與波數或波長關系曲線,就得到紅外光譜。
(二)基本原理
1.產生紅外吸收的條件
(1)分子振動時,必須伴隨有瞬時偶極矩的變化。
對稱分子:
沒有偶極矩,輻射不能引起共振,無紅外活性,如,N2、O2、Cl2等。
非對稱分子:
有偶極矩,紅外活性。
(2)只有當照射分子的紅外輻射的頻率與分子某種振動方式的頻率相同時,分子吸收能量后,從基態振動能級躍遷到較高能量的振動能級,從而在圖譜上出現相應的吸收帶。
2.分子的振動類型
伸縮振動:
鍵長變動,包括:對稱與非對稱伸縮振動;
彎曲振動:
鍵角變動,包括剪式振動、平面搖擺、非平面搖擺、扭曲振動;
3.幾個術語
基頻峰:
由基態躍遷到第一激發態,產生一個強的吸收峰,基頻峰;
倍頻峰:
由基態直接躍遷到第二激發態,產生一個弱的吸收峰,倍頻峰;
組頻:
如果分子吸收一個紅外光子,同時,激發了基頻分別為v1和v2的兩種躍遷,此時所產生的吸收頻率應該等于上述兩種躍遷的吸收頻率之和,故稱組頻;
特征峰:
凡是能用于鑒定官能團存在的吸收峰,相應頻率成為特征頻率;
相關峰:
相互可以依存而又相互可以佐證的吸收峰稱為相關峰;
4.影響基團吸收頻率的因素
(1)外部條件對吸收峰位置的影響:
物態效應、溶劑效應;
(2)分子結構對基團吸收譜帶的影響:
誘導效應:
通常吸電子基團使鄰近基團吸收波數升高,給電子基團使波數降低。
共軛效應:
基團與吸電子基團共軛,使基團鍵力常數增加,因此,基團吸收頻率升高,基團與給電子基團共軛,使基團鍵力常數減小,因此,基團吸收頻率降低。
當同時存在誘導效應和共軛效應,若兩者作用一致,則兩個作用互相加強,不一致,取決于作用強的作用。
(3)偶極場效應:
互相靠近的基團之間通過空間起作用。
(4)張力效應:
環外雙鍵的伸縮振動波數隨環減小其波數越高。
(5)氫鍵效應:
氫鍵的形成使伸縮振動波數移向低波數,吸收強度增強
(6)位阻效應:
共軛因位阻效應受限,基團吸收接近正常值。
(7)振動耦合;
(8)互變異構的影響;
(三)紅外吸收光譜法的解析
紅外光譜一般解析步驟
1. 檢查光譜圖是否符合要求;
2.了解樣品來源、樣品的理化性質、其他分析的數據、樣品重結晶溶劑及純度;
3.排除可能的“假譜帶”;
4. 若可以根據其他分析數據寫出分子式,則應先算出分子的不飽和度U
∪=(2+ 2n4+n3–n1)/2
n4,n3,n1分別為分子中四價,三價,一價元素數目;
5.確定分子所含基團及化學鍵的類型(官能團區4000-1330和指紋區1330-650cm-1)
6.結合其他分析數據,確定化合物的結構單元,推出可能的結構式;
7.已知化合物分子結構的驗證;
8.標準圖譜對照;
9. 計算機譜圖庫檢索。
(四)紅外吸收光譜法的應用
紅外光譜法廣泛用于有機化合物的定性鑒定和結構分析。