能發射激光的裝置。1954年制成了第一臺微波量子放大器,獲得了高度相干的微波束。1958年A.L.肖洛和C.H.湯斯把微波量子放大器原理推廣應用到光頻范圍,并指出了產生激光的方法。
1960年T.H.梅曼等人制成了第一臺紅寶石激光器。1961年A.賈文等人制成了氦氖激光器。1962年R.N.霍耳等人創制了砷化鎵半導體激光器。以后,激光器的種類就越來越多。按工作介質分,激光器可分為氣體激光器、固體激光器、半導體激光器和染料激光器4大類。近來還發展了自由電子激光器,其工作介質是在周期性磁場中運動的高速電子束,激光波長可覆蓋從微波到X射線的廣闊波段。按工作方式分,有連續式、脈沖式、調Q和超短脈沖式等幾類。大功率激光器通常都是脈沖式輸出。各種不同種類的激光器所發射的激光波長已達數千種,最長的波長為微波波段的0.7毫米,最短波長為遠紫外區的210埃,X射線波段的激光器也正在研究中。
除自由電子激光器外,各種激光器的基本工作原理均相同,產生激光的必不可少的條件是粒子數反轉和增益大過損耗,所以裝置中必不可少的組成部分有激勵(或抽運)源、具有亞穩態能級的工作介質兩個部分。激勵是工作介質吸收外來能量后激發到激發態,為實現并維持粒子數反轉創造條件。激勵方式有光學激勵、電激勵、化學激勵和核能激勵等。工作介質具有亞穩能級是使受激輻射占主導地位,從而實現光放大。激光器中常見的組成部分還有諧振腔,但諧振腔( 見光學諧振腔)并非必不可少的組成部分,諧振腔可使腔內的光子有一致的頻率、相位和運行方向,從而使激光具有良好的方向性和相干性。而且,它可以很好地縮短工作物質的長度,還能通過改變諧振腔長度來調節所產生激光的模式(即選模),所以一般激光器都具有諧振腔。
激光工作物質 是指用來實現粒子數反轉并產生光的受激輻射放大作用的物質體系,有時也稱為激光增益媒質,它們可以是固體(晶體、玻璃)、氣體(原子氣體、離子氣體、分子氣體)、半導體和液體等媒質。對激光工作物質的主要要求,是盡可能在其工作粒子的特定能級間實現較大程度的粒子數反轉,并使這種反轉在整個激光發射作用過程中盡可能有效地保持下去;為此,要求工作物質具有合適的能級結構和躍遷特性。
激勵(泵浦)系統 是指為使激光工作物質實現并維持粒子數反轉而提供能量來源的機構或裝置。根據工作物質和激光器運轉條件的不同,可以采取不同的激勵方式和激勵裝置,常見的有以下四種。①光學激勵(光泵)。是利用外界光源發出的光來輻照工作物質以實現粒子數反轉的,整個激勵裝置,通常是由氣體放電光源(如氙燈、氪燈)和聚光器組成,這種激勵方式也稱作燈泵浦。②氣體放電激勵。是利用在氣體工作物質內發生的氣體放電過程來實現粒子數反轉的,整個激勵裝置通常由放電電極和放電電源組成。③化學激勵。是利用在工作物質內部發生的化學反應過程來實現粒子數反轉的,通常要求有適當的化學反應物和相應的引發措施。④核能激勵。是利用小型核裂變反應所產生的裂變碎片、高能粒子或放射線來激勵工作物質并實現粒子數反轉的。