<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2018-07-25 19:44 原文鏈接: 生物芯片技術檢測原理

    熒光標記和檢測是利用熒光標記的DNA堿基在不同的波長下吸收和發射光。在微陣列分析中,多色熒光標記可以在一個分析中同時對二個或多個生物樣品進行多重分析,多重分析能大大地增加基因表達和突變檢測結果的準確性,排除芯片與芯片間的人為因素。熒光為基礎的分析使得利用一些先進的數據獲得技術成為可能,包括共聚焦掃描的CCD照相技術。用于芯片制備的無孔基質表面使得芯片檢測中的生化反應大大受益。玻璃基質所需的反應體積(5-200ul)比傳統的分析要小的多(5-50ml),小反應體積降低了試劑的消耗,增加了微陣列分析中核酸的反應物的濃度(0.1-1um),相對于傳統分析(0.1-4pm)增加100000倍之多,濃度的增加又能加速雜交的速度,從而減少獲得強熒光信號的時間,并可用蓋玻片封閉雜交槽進行雜交反應。對于以核酸雜交為原理的檢測技術,主要過程為:首先用生物素標記經擴增(也可使用其它放大技術)的靶序列或樣品然后再與芯片上的大量探針進行雜交。用鏈霉親和素(streptavidin)偶聯的熒光素(常用的熒光素還有lassamine 和phycoerythrin)作為顯色物質,圖象的分析則用落謝熒光顯微鏡、激光共聚焦顯微鏡或其它熒光顯微裝置對片基掃描,由計算機收集熒光信號,并對每個點的熒光強度數字化后進行分析。由于完全正常的 Watson-Crick配對雙鏈要比具有錯配(mismatch)堿基的雙鏈分子具有較高的熱力學穩定性,所以,前者的熒光強度要比后者強出5-35%。從這一點來說,該檢測方法是具有一定特異性的,而且熒光信號的強度還與樣品中靶分子含量呈一定的線性關系

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频