2.基于頻率的分析
利用基于頻率的分析,可通過快速傅立葉變換(FFT)將隨時間變化的振動信號分解為頻率分量。由此產生的幅度和頻率關系頻譜圖有助于監控特定的頻率分量及其諧波和邊帶(見圖5)。
FFT是一種在振動分析中廣泛采用的方法,特別是用于檢測軸承損傷。采用這種方法,可以將相應的組件分配給每個頻率分量。通過FFT,可以濾除滾動部件與缺陷區域接觸引起某些故障時產生重復脈沖的主要頻率。因為它們的頻率分量不同,因此可以區分不同類型的軸承損傷(外環、內環或滾珠軸承損傷)。但是,這需要軸承、電機和整個系統的準確信息。
此外,FFT流程需要提供在微控制器中反復記錄和處理振動的離散時間塊。盡管相比時域分析,這種分析需要更強的計算能力,但它能夠進行更詳細的損傷分析。
3.時域和頻域分析組合
此類分析最全面,因為它兼具兩種方法的優點。時域中的統計分析提供系統的振動強度隨時間變化的信息,以及它們是否處于許可的范圍內。頻域分析能夠以基本頻率的形式監測速度,同時也能夠監測準確識別故障特征所需的諧波分量。
對基本頻率的跟蹤尤其具有決定性,這是因為有效值和其他統計參數會隨速度而變化。如果與最后一次測量相比,統計參數發生顯著變化,則必須檢查基本頻率,以避免誤報。
對于這三種分析方法,其測量的數值都會隨時間發生變化。監測系統可能首先需要記錄運行狀況,或者生成所謂的指紋。然后與不斷記錄的數據進行比較。在偏差過大,或超過相應閾值的情況下,需要作出反應。如圖6所示,可能的反應可以是警告(2)或警報(4)。根據具體的嚴重程度,可能需要維修人員立即著手修正這些偏差。
通過磁場分析實施CBM
由于集成磁力計的快速發展,測量電機周圍的雜散磁場是另一種對旋轉機器進行狀態監控的頗有前景的方法。測量采用非接觸式;也就是說,機械和傳感器之間不需要直接連接。與振動傳感器一樣,磁場傳感器也有單軸和多軸版本。
對于故障檢測,應從軸向(平行于電機軸)和徑向(與電機軸呈直角)測量雜散磁場。徑向磁場通常被定子鐵芯和電機外殼削弱。與此同時,還會受到氣隙磁通量的顯著影響。軸向磁場是由鼠籠式轉子的電流和定子的末端繞組產生的。磁力計的位置和方向對于能否測量兩個磁場具有決定性的作用。因此,建議選擇靠近軸或電機外殼的合適位置。同時需要測量溫度,這絕對有必要,因為磁場強度與溫度直接相關。因此,在大多數情況下,如今的磁場傳感器都包含集成式溫度傳感器。此外,還應校準傳感器,實施溫漂補償校正。
FFT用于對電機實施基于磁場的狀態監控,就像振動測量一樣。但是,對于電機狀態評估,即使是幾赫茲到大約120赫茲范圍的低頻也足夠了。線路頻率顯得很突出,而出現故障時則以低頻分量頻譜為主。
在鼠籠式轉子的轉桿破裂的情況下,滑動值也具有決定性的作用。它與負載有關,理想情況下無負載時為0%。采用額定負載時,對于運行正常的機器,其值在1%和5%之間,出現故障時,會相應增大。對于CBM,應該在相同的負載條件下進行測量,以消除負載不同帶來的影響。
預防性維護的狀態
無論是哪種類型的狀態監測,即使采用最智能的監控方案,也無法百分之百保證不會出現意外的停機、故障或安全風險。只能降低這些風險。然而,預防性維護越來越受關注,正在成為行業的一個重要話題。它被認為是生產設施未來取得可持續成功的一個明確的先決條件。然而,要做到這一點,需要采用獨特的技術,而且必須不斷創新,加速發展。盈虧赤字體現在客戶利益和成本比較中。
盡管如此,許多工業企業已經認識到預防性維護的重要性,它是決定能否成功的重要因素,因此也是開展未來業務的機會—這種機會并不僅僅局限于維修服務領域。盡管面臨巨大挑戰,尤其是在數據分析領域,預防性維護目前已具備很高的技術可行性。但是,目前預防性維護具有強烈的機會主義特征。預計未來的業務模式將主要取決于軟件組件,硬件帶來的增值份額將不斷下降。總之,因為機器運行時間較長,產生的價值較高,目前對預防性維護的硬件和軟件的投資已經物有所值。