想象這樣一些場景:未來,無論是窗戶和墻壁,還是手機和筆記本電腦,太陽能電池無處不在。麻省理工學院(MIT)電子工程和計算機科學系教授孔靜(音譯),近日利用石墨烯研發的可彎曲透明太陽能電池,就讓這一夢想中的場景離現實更近了一步。這種太陽能電池無需單獨安裝,可集成到手機和電腦屏幕內,有望大幅降低這些電子產品的制造成本。
石墨烯“臨危受命”
近10年來,研究人員一直在研發各種透明的有機太陽能電池,并取得重大進展。這些電池與硅基太陽能電池相比,具有多項優勢:制造工藝簡單,成本便宜,輕便易彎曲,容易運送到沒有電網的偏遠地區。但這些研究面臨著一個長期難以解決的難題:找不到集導電性和光學透明性于一身的合適電極材料。
目前,最廣泛使用的材料是銦錫氧化物(ITO),這種材料導電性和透明性都符合要求,但太硬,彎曲時容易折斷碎裂,而且,銦是一種稀有金屬,用來生產太陽能電池成本過高。
石墨烯層成為替代ITO的最佳選擇。這種用隨處可見的碳制成的材料,不僅導電性高、可彎曲和透明,而且做成的電極只有1個納米厚,更符合超薄有機太陽能電池的需求。
新工藝克服瓶頸
但兩大瓶頸始終制約著石墨烯電極在太陽能電池的普及。第一個瓶頸是石墨烯兩個電極難以沉積到太陽能電池上。大多數太陽能電池板都是玻璃或塑料,當把其中一個石墨烯電極(底層電極)直接沉積時,需要水溶液和加熱,導致另一個頂層電極沉積工藝特別復雜。孔靜表示:“兩層石墨烯電極之間的空穴運輸層(HTL)易溶解,因此對水和熱特別敏感,如此一來,其他研究團隊往往將頂層電極用ITO代替,只在底層使用石墨烯電極。”
石墨烯電極的另一瓶頸是,頂層電極和底層電極必須承擔不同的工作性能,實現這一點非常不容易。
孔靜教授帶領其實驗室團隊研發出的特定工藝,卻能一次性解決這兩大瓶頸。他們使用銅箔、聚合物層、硅膠和一層乙烯—醋酸乙烯酯(EVA),不僅成功將兩層石墨烯電極沉積到太陽能板上,而且能改變頂層石墨烯電極的工作性能,使其與底層石墨烯的性能完全不同,確保了電流順暢。
透明度迄今最高
為了檢測石墨烯電極是否實用,孔靜團隊利用學校另一個實驗室的太陽能電池板,將石墨烯電極、ITO電極和鋁電極分別集成到玻璃板上,比較了三種電極的太陽能轉換效率。測試結果發現,石墨烯電極和ITO電極的轉換效率相當;鋁電極的轉換效率最高。孔靜解釋道,這是因為鋁電極能將部分太陽光反射回電池板,可吸收更多的太陽能,因此效率最高。
他們對用兩層石墨烯電極制成的太陽能電池進行透明度檢測發現,其光學透明度達到61%,最高值有69%,在目前透明太陽能電池中最高。
孔靜表示,他們的石墨烯太陽能電池能鋪展到任何表面,不管這個表面的軟硬和透明程度如何。他們還用透明塑料、不透明紙和半透明膠帶分別做底板,將雙層石墨烯電極沉積其上制成太陽能電池,發現三者轉換效率相當,略低于玻璃為底板的太陽能電池轉換效率。這意味著,石墨烯太陽能電池未來用途非常廣泛,無論是墻壁和玻璃,還是手機和電腦,石墨烯電池都可以鋪展在上面,提供所需電能。
雖然目前石墨烯電池的轉換效率只有4%,但根據孔靜團隊的理論計算,在不降低透明度的情況下,石墨烯太陽能電池的轉換效率可提高到10%,提升空間很大,這也是他們下一步的研究重點。
堆垛是二維層狀材料一個獨特的結構自由度,在對稱性破缺和各種新奇的電學、光學、磁學以及拓撲現象等方面發揮著重要作用。例如,與具有中心對稱性的2H堆垛雙層二硫化鉬形成明顯對比,3R堆垛雙層二硫化鉬的空間反......
分數量子霍爾效應通常在非常高的磁場下出現,但麻省理工學院的物理學家現在在簡單的石墨烯中觀察到了它。在5層石墨烯/六方氮化硼(hBN)莫爾超晶格中,電子(藍球)彼此強烈相互作用,并且表現得好像它們被分解......
英國研究人員公布了一項重要的發現:首次人體嚴格受控暴露臨床試驗顯示,吸入特定類型的石墨烯不會對肺或心血管功能產生短期不良影響。這意味著石墨烯這種納米材料可以安全地進一步開發,而不會對人類健康造成重大風......
天津大學教授馬雷聯合美國佐治亞理工學院WalterdeHeer團隊,首次制成了可擴展的半導體石墨烯,這可能為制造比現在的硅芯片速度更快、效率更高的新型計算機鋪平道路。石墨烯是一種由單層碳原子制成的材料......
天津大學納米顆粒與納米系統國際研究中心的馬雷教授團隊攻克了長期以來阻礙石墨烯電子學發展的關鍵技術難題,在保證石墨烯優良特性的前提下,打開了石墨烯帶隙,成為開啟石墨烯芯片制造領域大門的重要里程碑。該研究......
近日,我國研究團隊創造了世界上第一個由石墨烯制成的功能半導體,相關論文發表在權威期刊Nature雜志上。論文名為“Ultrahigh-mobilitysemiconductingepitaxialgr......
“后摩爾時代,放過石墨烯(Graphene)吧。”這是兩年前中國科學院院士、北京石墨烯研究院院長劉忠范說過的話。石墨烯,一個“新材料之王”,一個曾經在2021年在“全球IEEE(電氣和電子工程師協會)......
美國佐治亞理工學院研究人員創造了世界上第一個由石墨烯制成的功能半導體。該項突破為開發全新電子產品打開了大門。研究發表在《自然》雜志上。石墨烯和碳化硅的分子模型。圖片來源:佐治亞理工學院石墨烯是由已知最......
英國曼徹斯特大學國家石墨烯研究所的科研人員發現了一種利用光加速石墨烯質子傳輸的方法,可能會改變氫氣產生方式。相關研究結果發表在《自然通訊》上。質子傳輸是許多可再生能源技術的關鍵步驟,例如氫燃料電池和太......
美國西北大學、波士頓學院和麻省理工學院研究人員從人腦中汲取靈感,開發出一種能夠進行更高層次思維的新型突觸晶體管,可像人腦一樣同時處理和存儲信息。在新的實驗中,研究人員證明晶體管對數據進行分類的能力,超......