<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2024-06-12 10:48 原文鏈接: 細菌的結構特征及主要組成

    細菌的結構分為基本結構和特殊結構。基本結構是各種細菌都具有的結構,包括細菌的細胞壁、細胞膜、細胞質、核質。某些細菌特有的結構稱為特殊結構,包括細菌的莢膜、鞭毛、菌毛、芽胞。

    (1)細胞壁

    細胞壁(cell wall)位于菌細胞的最外層,包繞在細胞膜的周圍,組成較復雜,并隨細菌不同而異。革蘭陽性菌和革蘭陰性菌細胞壁的共有組分為肽聚糖,但各自有其特殊組分。 

    細胞壁厚度因細菌不同而異,一般為15-30nm。主要成分是肽聚糖,由N-乙酰葡糖胺和N-乙酰胞壁酸構成雙糖單元,以β-1,4糖苷鍵連接成大分子。N-乙酰胞壁酸分子上有四肽側鏈,相鄰聚糖纖維之間的短肽通過肽橋(革蘭陽性菌)或肽鍵(革蘭陰性菌)橋接起來,形成了肽聚糖片層,像膠合板一樣,粘合成多層。 

    肽聚糖中的多糖鏈在各物種中都一樣,而橫向短肽鏈卻有種間差異。革蘭陽性菌細胞壁厚約20-80nm,有15-50層肽聚糖片層,每層厚1nm,含20-40%的磷壁酸(teichoic acid),有的還具有少量蛋白質。革蘭陰性菌細胞壁厚約10nm,僅2-3層肽聚糖,其他成分較為復雜,由外向內依次為脂多糖、細菌外膜和脂蛋白。此外,外膜與細胞之間還有間隙。

    肽聚糖是革蘭陽性菌細胞壁的主要成分,凡能破壞肽聚糖結構或抑制其合成的物質,都有抑菌或殺菌作用。如溶菌酶是N-乙酰胞壁酸酶,青霉素抑制轉肽酶的活性,抑制肽橋形成。 

    細菌細胞壁的功能包括:①保持細胞外形,提高機械強度;②抑制機械和滲透損傷(革蘭陽性菌的細胞壁能耐受20kg/cm2的壓力);③介導細胞間相互作用(侵入宿主)④;防止大分子入侵;⑤協助細胞運動和生長,分裂和鞭毛運動;⑥賦予細菌特定的抗原性以對抗生素和噬菌體的敏感性。

    其中還有一些缺壁細菌,分為四類:①L型細菌,是指某些在實驗室或宿主體內,通過自發突變,形成細胞壁缺陷的變異菌株;②原生質體,是指在人為條件下(用溶菌酶或青霉素)處理革蘭陽性細菌,獲得的無壁細胞;③球狀體,是指在人為條件下,處理革蘭陰性菌,獲得的殘留部分細胞壁的細胞;④支原體,是指在進化過程中獲得的無壁的原核微生物。 

    (2)細胞膜

    是典型的單位膜結構,厚約8-10nm,外側緊貼細胞壁,某些革蘭陰性菌還具有細胞外膜。通常不形成內膜系統,除核糖體外,沒有其它類似真核細胞的細胞器,呼吸和光合作用的電子傳遞鏈位于細胞膜上。某些進行光合作用的原核生物(藍細菌和紫細菌),質膜內褶形成結合有色素的內膜,與捕光反應有關。某些革蘭陽性細菌質膜內褶形成小管狀結構,稱為中膜體(mesosome)或間體,中膜體擴大了細胞膜的表面積,提高了代謝效率,有擬線粒體(Chondroid)之稱,此外還可能與DNA的復制有關。 

    (3)細胞質與核質體

    細菌和其它原核生物一樣,只有擬核,沒有核膜,DNA集中在細胞質中的低電子密度區,稱核區或核質體(nuclear body)。細菌一般具有1-4個核質體,多的可達20余個。核質體是環狀的雙鏈DNA分子,所含的遺傳信息量可編碼2000-3000種蛋白質,空間構建十分精簡,沒有內含子。由于沒有核膜,因此DNA的復制、RNA的轉錄與蛋白質的合成可同時進行,而不像真核細胞的這些生化反應在時間和空間上是嚴格分隔開來的。 [1]

    每個細菌細胞約含5000-50000個核糖體,部分附著在細胞膜內側,大部分游離于細胞質中。細菌核糖體的沉降系數為70S,由大亞單位(50S)與小亞單位(30S)組成,大亞單位含有23SrRNA,5SrRNA與30多種蛋白質,小亞單位含有16SrRNA與20多種蛋白質。30S的小亞單位對四環素與鏈霉素很敏感,50S的大亞單位對紅霉素與氯霉素很敏感。 [1]

    細菌核區DNA以外的,可進行自主復制的遺傳因子,稱為質粒(plasmid)。質粒是裸露的環狀雙鏈DNA分子,所含遺傳信息僅為2-200個基因,能進行自我復制,有時能整合到核DNA中去。質粒DNA在遺傳工程研究中很重要,常用作基因重組與基因轉移的載體。 [1]

    胞質顆粒是細胞質中的顆粒,起暫時貯存營養物質的作用,包括多糖、脂類、多磷酸鹽等。 [1]

    (4)莢膜

    許多細菌的最外表還覆蓋著一層多糖類物質,邊界明顯的稱為莢膜(capsule),如肺炎球菌,邊界不明顯的稱為粘液層(slime layer),如葡萄球菌。莢膜對細菌的生存具有重要意義,細菌不僅可利用莢膜抵御不良環境;保護自身不受白細胞吞噬;而且能有選擇地粘附到特定細胞的表面上,表現出對靶細胞的專一攻擊能力。例如,傷寒沙門桿菌能專一性地侵犯腸道淋巴組織。細菌莢膜的纖絲還能把細菌分泌的消化酶貯存起來,以備攻擊靶細胞之用。 [1]

    另外在細菌入侵免疫系統時,莢膜可以防止免疫系統識別細菌,從而存活下來。 [1]

    (5)鞭毛

    鞭毛是某些細菌運動的特殊結構,由一種稱為鞭毛蛋白(flagellin)的彈性蛋白構成,結構上不同于真核生物的鞭毛。細菌可以通過調整鞭毛旋轉的方向(順和逆時針)來改變運動狀態。 [1]

    (6)菌毛

    菌毛是在某些細菌表面存在著一種比鞭毛更細、更短而直硬的絲狀物,須用電鏡觀察。特點是:細、短、直、硬、多,菌毛與細菌運動無關,根據形態、結構和功能,可分為普通菌毛和性菌毛兩類。前者與細菌吸附和侵染宿主有關,后者為中空管子,與傳遞遺傳物質有關。 [1]

    (7)芽胞

    有些細菌在生長發育的后期,個體縮小,細胞壁增厚,形成芽胞。芽胞是細菌的休眠體,對不良環境有較強的抵抗能力。小而輕的芽胞還可以隨風四處飄散,落在適當環境中,又能萌發成為細菌。細菌快速繁殖和形成芽胞的特性,使它們幾乎無處不在。 [1]

    某些細菌處于不利的環境,或耗盡營養時,形成內生胞子,又稱芽胞,是對不良環境有強抵抗力的休眠體,由于芽胞在細菌細胞內形成,故常稱為內生胞子。 [1]

    芽胞的生命力非常頑強,有些湖底沉積土中的芽孢桿菌經500-1000年后仍有活力,肉毒梭菌的芽胞在pH 7.0時能耐受100℃煮沸5-9.5小時。


    相關文章

    新型“雙功能”抗菌肽可對抗細胞內細菌

    近日,東北農業大學單安山教授團隊成功構建了兼具抗菌活性和細胞穿透活性的“雙功能”自組裝納米抗菌肽用于對抗細胞內細菌,相關成果發表在《先進科學》上。“雙功能”自組裝納米抗菌肽的性能。東北農業大學供圖隨著......

    細菌的“鐵博弈”,為多領域應用打開思路

    在人類肉眼難以察覺的微觀世界中,微生物無處不在,它們之間的博弈與互動構成了復雜的生態系統網絡。鐵是微生物維持生存的必需元素,也是微生物之間的博弈互動所爭奪的核心稀缺資源。然而,微生物在鐵元素博弈中遵循......

    國際專家團隊呼吁警惕鏡像細菌潛在風險

    近日,包括天津大學生物安全戰略研究中心主任、北洋講席教授張衛文在內的一個由國際頂尖合成生物學家組成的國際專家團隊在《科學》發文,呼吁謹慎并采取集體行動來解決鏡像細菌發展帶來的潛在風險。據介紹,“鏡像細......

    皮膚表面細菌“化身”活體疫苗

    想象一下,有一款新型疫苗,接種時不需要用針扎進肌肉注射,只需在皮膚上涂抹一種乳膏,使用起來毫無痛感,不會引起發熱、腫脹、發紅或手臂疼痛。人們無需排隊等待接種,而且其價格低廉。據最新一期《自然》雜志報道......

    “鏡像細菌”研究引發隱憂

    科學家擔心,人造細菌會從培養皿中“逃脫”,從而引發一場全球瘟疫,屆時地球上的生命將無法抵御。近日,38位科學家在《科學》發文呼吁,世界各國政府應該停止資助并禁止有關“鏡像細菌”的研究,因為這種細菌的化......

    我國科研人員發現細菌免疫新機制

    無論是人類還是細菌,生命過程中都會面臨病毒的威脅。你知道嗎?細菌雖然比人類簡單,卻也有自己的“免疫系統”用來保護自己免受感染。北京時間12月13日,中國藥科大學藥學院藥理系、重慶中國藥科大學創新研究院......

    細菌耐藥性控制研究再獲新進展

    近日,國際學術期刊《先進科學》在線發表了四川農業大學動物醫學院趙興洪/萬紅平團隊的研究論文,該研究成果成功利用仿噬菌體策略增強了肽類抗生素的治療效能,為細菌耐藥性控制提供了新策略。這是該團隊繼今年6月......

    細菌納米復合材料如何對抗腫瘤

    近日,四川大學華西醫院腫瘤中心教授陳念永團隊在《納米生物技術雜志》上發表論文,揭示了細菌可以通過多種策略與納米材料偶聯,在抗腫瘤治療中發揮多種作用。腫瘤生物學復雜性和異質性阻礙了有效癌癥治療方法的開發......

    牙刷上有600多種噬菌體,殺死耐藥細菌或有新方法

    圖片來源:英國《新科學家》雜志網站科技日報訊(記者劉霞)美國科學家在人們常用的牙刷和淋浴噴頭上,發現了600多種能夠感染細菌的病毒,其中不乏許多未被人類發現的“新面孔”。研究團隊表示,這些病毒對人類并......

    腸道菌群里的核心成員被找到有望為精準醫學帶來顛覆性變革

    上海交通大學與美國羅格斯大學微生物組與人體健康聯合實驗室牽頭的研究團隊,首次找到了腸道菌群里面的核心成員。該研究成果10月7日晚在線發表于《細胞》雜志。構建“蹺蹺板”模型該研究負責人、微生物組與人體健......

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频