<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2019-11-13 12:31 原文鏈接: 自然染色質免疫沉淀實驗設計

    1. The preparation of native chromatin from cultured human cells

    1.1.Cultured cells (e.g. HL-60 or lymphoblastoids) are grown to a density of approximately 1 x 106 cells/ml until they are inlog phase.

    1.2.Harvest cells: centrifuge samples (7,000 g, 10 min, 4°C) and wash the cell pellet 3 x ice cold PBS (Phosphate BufferedSaline).

    It is essential that 5 mM Na butyrate is present in all solutions throughout chromatin isolationwhen using antibodies to acetylated histones to prevent deacetylation.

    1.3.Resuspend cell pellet in TBS (Tris buffered saline) at 2 x 107 cells/ml and add an equal volume of 1.0% v/v Tween 40 inTBS. Add PMSF to a final concentration of 0.5 mM. Leave stirring gently on ice for 1hr (Transfer the suspension into a50ml tube with a small magnetic bar or flea; place the tube in ice on top of a magnetic stirrer).

    1.4.Transfer cell lysate to an all-glass homogeniser and homogenise 7 ml aliquots with seven strokes using an ‘A’ or ‘tight’

    pestle. Check that nuclei have been released by phase-contrast microscopy; intact cells should have the central darkregion of the nucleus surrounded by a halo, which is the less dense cytoplasm.

    You may have to increase or decrease this homogenisation step to maximise the yield of nucleidepending on cell line.

    1.5.Centrifuge samples (10,000 g, 20 min, 4°C).

    1.6.Resuspend nuclei pellet in 25% [w/v] sucrose/TBS at 4x106 nuclei / ml and underlay with 0.5 vol of 50% [w/v] sucrose /TBS; centrifuge the samples (14,000 g, 25 min, 4°C).

    1.7.Discard supernatant and wash nuclei pellet in 5 ml 25% [w/v] sucrose/TBS; centrifuge samples (14,000 x g, 25 min,4°C).

    1.8.Resuspend nuclei pellet in 5ml digestion buffer and check absorbance ratios at 260 nm and 280 nm for a dilutedsample of the nuclei suspension; calculate the approximate DNA concentration from the A260 reading (the ratio ofA260/A280 should be about 1.1). Centrifuge samples (10,000 rpm, 10 min, 4°C) and resuspend the nuclei pellet at0.5mg/ml in 1.7 ml Eppendorf tube(s)

    2. Micrococcal nuclease digestion

    Normally we add 50 U micrococcal nuclease per 0.5 mg DNA, in a reaction volume of 1.0 ml. This is usually provided as apowder; dissolve the micrococcal nuclease in dH20 to the required concentration and store as small aliquots at -20°C.

    Aliquots may be re-frozen and re-used once. This step needs to be carefully controlled, especially in the initial preparations.

    High concentrations of micrococcal nuclease may over-digest the chromatin, leading tosub-nucleosomal particles. You should aim to obtain a long/medium oligonucleosome ladder.

    If pure mononucleosome preparations are required carry out a linear sucrose gradient (5-20%),this will increase resolution.

    2.1. Perform microccal nuclease digestions at 37°C for 5 min.

    2.2. Stop reaction by addition of 0.2 M EDTA to a final concentration of 5 mM.

    2.3. Place all samples on ice for 5 min; centrifuge samples (8,000 g, 5 min).

    2.4. Remove and keep the first S/N (this is called the S1 fraction; total vol 1.0 ml); store overnight at 4°C.

    2.5. Resuspend the pellet in 1.0 ml Lysis buffer and dialyse overnight against 2 litres of the same buffer.

    2.6. After overnight dialysis centrifuge samples (500 g, 10 min, 4°C).

    2.7. Remove and keep the supernatant (called the S2 fraction; total vol about 1.2 ml after dialysis); store at 4°C.

    2.8. Resuspend insoluble pelleted material in 200 ul lysis buffer (called the P fraction).

    3. Analysis of soluble chromatin fractions

    3.1. Check A260/A280 in all samples; the ratios for S1, S2 and P fractions are approximately 1.7, 1.5 and 1.3 respectively.

    3.2. Analyze all samples by 1.2% agarose gel electrophoresis.

    Do not place ethidium bromide in the agarose gel or the electrophoresis buffer, because of thepresence of SDS (see below).

    3.3. Preparation of samples: xul (total of 5ug) chromatin fraction (S1, S2 and P) yul dH2O (x+y = 25ul) 3ul 1% [w/v] SDS(final conc 0.1%) 2 ul gel loading buffer, containing bromophenol blue3.4. Stain the gel with 0.5ug/ml ethidium bromide after the run has finished.

    4. Immunoprecipitation

    4.1.100-200ug unfixed chromatin + 100-200ul affinity purified antibody (50-100ug Ig) and the final volume made up to 1.0ml with incubation buffer. A negative control, with no added antibody, also needs to be set up to test for any nonspecificbinding of the chromatin to the protein A Sepharose.

    4.2.Incubate overnight at 4°C on a slow rotating turntable. Add 200ul 50% v/v protein A Sepharose; use a siliconizedpipette with the tip cut off to make this step easier. Incubate for 3 hr at room temperature on a fast rotating turntable.

    (Make sure that the Sepharose is in a suspension at all times).

    4.3.Centrifuge samples (3,000 g, 10 min, 4°C), remove and keep the S/N; this is the unbound (or “U”) fraction.

    4.4.Resuspend the Sepharose pellet in 1ml buffer A and layer onto 9ml of the same buffer using a siliconised pasteurpipette and siliconized 15 ml tube.

    4.5.Centrifuge samples (10,000 g, 10 min, 4°C), discard the S/N and wash the Sepharose sequentially in 10 ml buffer Band buffer C.

    4.6.Finally, resuspend the Sepharose in 1 ml buffer C and transfer back to siliconized Eppendorfs.

    4.7.Centrifuge samples (3,000 g, 10 min, 4°C) and resuspend the sepharose pellet in 250ul 1.0% SDS / incubation bufferand incubate for 15 min at RT on a fast turntable. (Ensure that the Sepharose is thoroughly resuspended at all times).

    4.8.Centrifuge the samples (3,000 g, 10 min, 4°C) and remove and keep S/N; this is the bound (or “B”) fraction.

    4.9.Wash the sepharose in 250ul 1.0% SDS / incubation buffer and centrifuge immediately (3,000 g, 10 min, 4°C).

    Remove the S/N and pool with the previous bound fraction from the previous step.

    5. DNA Isolation

    Add 500ul incubation buffer to each bound fraction, to reduce the SDS concentration to 0.5% SDS.

    Unbound and bound fractions then treated as follows:

    5.1.Add 0.33 vol (330ul) phenol/chloroform; vortex and spin (13,000 rpm, 10 min, microcentrifuge). Keep the organicphase and interface; this is used to isolate immunoprecipitated proteins (see below).

    5.2.Transfer the aqueous supernatant to an equal volume (1.0 ml) of phenol/chloroform; vortex and spin (13,000 rpm, 10min, microcentrifuge)5.3.Transfer supernatant to an equal volume (1.0 ml) of chloroform; vortex and spin (13,000 rpm, 10 min, microcentrifuge)5.4.Transfer S/N to a clean centrifuge tube and add 0.1 vol (100ul) 4 M LiCl, 50ug glycogen (Molecular biology grade,dissolved in dH20 at 2 mg/ml) as a carrier and 4 vol of ethanol. Vortex thoroughly and leave at -20°C overnight.

    5.5.Centrifuge samples (13,000 g, 15 min) to precipitate the DNA.

    5.6.Wash the pellet with 70% ethanol and redissolve the DNA in 250ul TE buffer.

    5.7.Store samples at -20°C or proceed with detection method (PCR, microarray, etc).

    5.8.PCR is used to quantify DNA levels of specific loci. This is analyzed semi-quantitatively (analyses of PCR end-productby agarose gel) using primers which can be designed using the URL below.

    http://biotools.umassmed.edu/bioapps/primer3_www.cgiAlternatively, DNA levels are quantitatively measured by real-time PCR. Primers and probes are often designed usingsoftware provided with the real-time PCR apparatus.

    6. Protein Isolation

    6.1.To the first phenol/chloroform phase (see DNA isolation; step1) add 5ul of a 1 mg/ml solution of BSA (to be used as acarrier), 0.01 vol (4ul) 10 M H2SO4 and 12 vol of acetone.

    6.2.After precipitation at -20°C wash the protein pellets once in acidified acetone (1:6 100 mM H2SO4:acetone) and 3 timesin dry acetone. Proteins can be analyzed by SDS-PAGE.

    Solutions

    10 x TBS

    0.1 M Tris-HCl (pH 7.5)

    1.5 M NaCl

    30 mM CaCl2

    20 mM MgCl2

    50 mM Na butyrate (pH 8.0)

    Digestion buffer

    0.32 M sucrose

    50 mM Tris-HCl (pH 7.5)

    4 mM MgCl2

    1 mM CaCl2

    0.1 mM PMSF

    5 mM Na butyrate

    Lysis buffer

    1.0 mM Tris-HCl (pH7.4)

    0.2 mM Na2EDTA

    0.2 mM PMSF

    5 mM Na butyrate

    Incubation buffer

    50 mM NaCl

    20 mM Tris-HCL (pH 7.5)

    20 mM Na butyrate

    5 mM Na2EDTA

    0.1 mM PMSF

    Buffer A

    50 mM Tris-HCl, (pH 7.5)

    10 mM EDTA

    5 mM Na butyrate

    50 mM NaCl

    Buffer B

    50 mM Tris-HCL (pH 7.5)

    10 mM EDTA

    5 mM Na butyrate

    100 mM NaCl

    Buffer C

    50 mM Tris-HCL (pH 7.5)

    10 mM EDTA

    5 mM Na butyrate

    150 mM NaCl

    Protein A Sepharose

    Pre-swell protein A Sepharose overnight in buffer A at 4°C. Centrifuge (10,000 x g, 10 min) and resuspendpellet in approximately an equal volume (50% v/v) of buffer A.

    (Adapted from protocols used by Laura O'Neill and Prof. Bryan Turner. University of Birmingham)

    相關文章

    康希諾生物參與開發的重組帶狀皰疹疫苗在加拿大獲批

    2023年7月23日,康希諾生物發布公告,集團與VaccitechLimited合作開發的重組帶狀皰疹疫苗(腺病毒載體)(CS-2032帶狀皰疹疫苗)已獲得加拿大衛生部的臨床試驗申請的無異議函。公司的......

    揭秘早期哺乳動物的發育過程

    由于小鼠的易實驗性和強遺傳性,其一直是生物醫學研究中使用廣泛的動物模型。但是,胚胎學研究發現,小鼠早期發育的許多方面與其他哺乳動物不同,從而使有關人類發育的推論復雜化。英國劍橋大學等研究團隊合作構建了......

    研究人員開發基于納米抗體的酶聯免疫分析傳感器

    7月7日,記者從廣東工業大學獲悉,該校生物醫藥學院教授趙肅清團隊與美國加州大學戴維斯分校合作,首次制備出高親和力的可溶性環氧化物水解酶抑制劑(EC5026和TPPU)納米抗體,并用于開發靈敏的間接競爭......

    新進展!構建新型雙堿基編輯器

    堿基編輯器是基于CRISPR/Cas9發展的新一代基因組編輯技術,可誘導單個堿基的突變,而鮮有關于特異性介導A-to-G和C-to-G雙突變的堿基編輯工具的研究。此外,關于堿基編輯系統與染色質環境之間......

    生物物理所等發現病原微生物干擾植物免疫新機制

    6月26日,中國科學院生物物理研究所王艷麗研究團隊與英國塞恩斯伯里實驗室馬文勃研究團隊,在《細胞》(Cell)上,發表了題為Pathogenproteinmodularityenableselabor......

    《科學》子刊:PDL1甲基化是免疫治療耐藥的關鍵機制!

    作為人體內至關重要的免疫檢查點,PD-1/L1通路實在會受到太多調控因素的影響,上到遺傳和突變、下到腸道微生物,還有細胞內外形形色色的各種因子,好像誰都能來插一腳,那表觀遺傳當然也少不了[1]。近期在......

    NatCommun:科學家揭示機體特殊的免疫系統信號復合體

    補體膜攻擊復合體(MACs,membraneattackcomplexes)的內化在內皮細胞中能組裝NLRP3炎性小體,并促進IL-β介導的機體組織炎癥。近日,一篇發表在國際雜志NatureCommu......

    由微生物群調節的免疫抑制性腸道T細胞進入腫瘤

    法國巴黎薩克雷大學LaurenceZitvogel等研究人員合作發現,一種由微生物群調節的檢查點引導免疫抑制性腸道T細胞進入腫瘤。2023年6月9日,國際知名學術期刊《科學》發表了這一成果。通過誘導回......

    21號染色體內免疫相關基因或影響唐氏綜合征

    施普林格·自然旗下專業學術期刊《自然-遺傳學》最新發表一篇遺傳學論文稱,研究人員開展的一項小鼠研究發現,21號染色體上的干擾素受體(IFNR)基因簇的三個拷貝可能和唐氏綜合征的一些性狀有關。今后仍需開......

    助力邊遠地區破解“生了腫瘤,栽在心臟”難題

    5月25日,由復旦大學附屬中山醫院心內科腫瘤心臟病亞專科、第十七屆東方心臟病學會議“腫瘤心臟病學論壇”、上海《中國臨床醫學》雜志社、上海健盟醫學科技服務中心聯合舉辦的第二期復旦中山“免疫檢查點抑制劑相......

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频