近年來,導電金屬納米線特別是銀納米線的應用研究受到廣泛關注,主要用于制備透明導電材料以及可延展的彈性導電材料。由于金屬納米線的分散特征與傳統的溶液型或顆粒型液態體系有較大區別,目前主要采用涂布、噴涂、旋涂等方法獲得銀納米線導電薄膜。但這些現有的主流成膜方法并不能直接實現圖案化,需要額外增加蝕刻等工藝以滿足應用需求。因此,直接印刷金屬納米線獲得透明導電圖案是簡化工序和降低成本的重要手段之一,可進一步推動導電金屬納米線的應用。
印刷頂部電極是目前有機電子器件的另一個重要挑戰。一方面,由于有機器件的機械強度和化學穩定性都比較差,在器件頂部直接印刷電極可能對器件性能造成比較復雜的負面影響,嚴重降低器件性能。另一方面,在器件頂部直接印刷電極時,對器件承印表面的處理受到諸多限制,難以獲得理想的印刷效果。而如果采用先整體覆膜再圖案化的方法制備頂電極,則蝕刻方法也可能會損害整個器件的性能。因此,很多大規模卷對卷的有機印刷器件,其頂部電極仍然選擇了真空沉積等傳統制備方法。
中國科學院蘇州納米技術與納米仿生研究所崔錚課題組針對印刷銀納米線的課題進行了深入的研究,開發出以噴墨打印為代表的多種印刷方法,可以直接獲得圖案化的透明導電薄膜,取得了透過率超過85%、方塊電阻小于20歐姆的較好效果。研究人員通過與蘇州納米所馬昌期課題組合作,克服印刷工藝和有機器件物理方面的諸多難題,成功實現了噴墨打印的銀納米線直接作為半透明有機光伏電池(OPV)的頂部透明電極。該器件在實現半透明、降低電極制備成本的同時,器件的轉換效率也非常理想,最高可達采用傳統非透明電極器件的90%。考慮到印刷過程中溶劑對器件的影響,以及透明電極帶來的部分光損失,該結果意味著這類印刷透明電極具有非常良好的應用前景。相關結果發表于Appl. Phys. Lett. 2015, 106, 093302。
此項工作得到了國家自然科學基金委、中國科學院戰略性先導科技專項、國家科技支撐計劃課題的大力支持。
圖1. 噴墨打印銀納米線透明導電網絡的典型SEM結構圖
圖2. (a) 所采用的OPV器件結構和噴墨打印示意圖;(b) 打印不同遍數銀納米線之后的器件吸收測試結果;(c) 采用打印頂部電極的半透明OPV器件在可見光波段的透過率曲線。插圖為器件照片,顯示半透明效果良好;(d) 典型的器件電流密度-電壓(J-V)曲線,其中器件A3T、A5T、A7T、A9T為同一個器件在打印3、5、7、9次電極后的性能對比,器件B為采用真空沉積非透明銀電極的參比器件。插圖為表現最好的A7T與參比器件B的對數電流對比,顯示打印電極的整流比有所降低。
愛爾蘭和丹麥科學家攜手,開發出一種能夠分析人腦中基因活動的新技術。最新研究為理解和治療癲癇等神經系統疾病提供了全新的視角。相關論文發表于新一期《臨床研究雜志》子刊《機理解析》。研究示意圖。圖片來源:《......
近日,西安交通大學電氣學院王鵬飛教授課題組在高安全鈉金屬電池領域取得重要進展,團隊設計了一種雙陰離子配位的具有局部高濃度結構的磷酸酯類電解液,并在正極表面形成了薄而穩定的富含磷/硼的梯度CEI。相關研......
柔軟且可拉伸的電極通過電刺激在皮膚上重現振動或壓力等觸覺。圖片來源:雅各布工程學院美國加州大學圣迭戈分校科學家領導的小組開發出一款柔軟且有彈性的電子設備。當佩戴在皮膚上時,這款設備能模擬皮膚上感受到的......
科學背景溶劑化結構及其相應的動力學對于大多數在溶液中發生的化學反應和電子轉移反應至關重要。溶劑重排會影響反應途徑的自由能格局,并決定產物的重組。溶劑重排的時間尺度決定了產物穩定的速度。幾十年來,液體和......
科技日報北京6月19日電(記者張佳欣)據最新一期《自然·材料》雜志報道,美國麻省理工學院領導的國際團隊開發出一種不含金屬的、類似果凍的材料,它像生物組織一樣柔軟和堅韌,同時可像傳統金屬一樣導電。這種材......
據最新一期《科學·機器人》雜志報道,瑞士洛桑聯邦理工學院研究團隊設計出一種能插入人類頭骨的微創電極。這種新穎的電極可通過頭骨上的一個小孔,插入一個較大的皮質電極陣列,將其部署在頭骨和大腦表面之間約1毫......
離子熱電轉換是以離子為載流子實現熱能與電能直接轉換的一種能量轉換形式,其具有毫伏級塞貝克系數、良好延展性和低成本等優勢。離子熱電的巨塞貝克效應為開發高性能熱電器件開辟了全新途徑,在星際探測、自發(供)......
自然界擁有自己的內在“電網”。在我們腳下和海底,細菌產生的微小納米線“呼出”多余的電子而形成一張遍布全球的“電網”。美國耶魯大學研究人員發現,光是在生物膜細菌中培養這種電子活動的“盟友”。將細菌產生的......
北京高壓科學研究中心毛河光院士與鄭海燕、李闊課題組,在極端高溫高壓條件下首次合成具有專一tube(3,0)結構的碳-氮有序間隔排列超細金剛石納米線,并發現芳香體系在高壓下的[1,3,5]協同加成機理,......
在智能可穿戴電子領域,穩定耐用的柔性可拉伸導體仍然是一個巨大的挑戰。尤其是在人體表皮生理信號的收集過程中,穩定的可拉伸電極可以實現長時間精準的信號收集。目前無論是表面結構設計型、導電材料復合型還是本真......