圖 不同頻率下的大腦皮層的激活狀態
卒中患者在運動想象時腦部皮質的激活特征
Masahito等人(2013)利用卒中患者根據信號想象運動時從而獲得大腦皮層激活,實驗分為兩組,REAL反饋組中的受試者被提供了與想象相關的血紅蛋白信號。SHAM反饋組中的受試者在神經反饋期間被提供無關的隨機信號,結果發現在REAL組中,FMA的量表顯著改善。對嚴重受損患者的分析也顯示了改善;此外,在REAL組中,神經反饋的心理練習增強了在病灶同側前運動區域中與圖像相關的皮質激活,而在SHAM組中沒有觀察到皮質激活的顯著變化,通過血氧濃度前后時間的變化,也表明了運動的心里想象,可以誘發腦部神經元的激活。
圖 REAL組和SHAM組在想象時的腦部激活
圖 REAL組和SHAM組皮質激活對比,可以看出REAL組有比較顯著的皮質激活
卒中患者在雙重任務下前額葉的激活特征
Emad等人(2016)通過對比卒中患者和正常志愿者在行走、計數、行走和計數三種情況下腦皮質激活發現,與單任務行走相比,雙重任務期間前額葉皮質活動增加(HbO增加程度更大,同時HHb降低的程度更大)。此外中風幸存者在雙任務條件下行走時遇到的困難可能反映了中風后行走所帶來的認知需求的增加。我們觀察到在單任務行走和雙任務條件下,與健康對照相比,中風幸存者都表現出PFC活化增加,這些研究結果表明,在中風后行走期間對PFC活動的需求增加,并且這種需求在并發認知任務的存在下進一步增加。
圖 卒中患者(上)與健康人(下)在單任務(虛線)和雙任務(實線)下皮質激活的變化
Eric等人(2019)對急性及亞急性卒中患者(發病3個月內)在快/慢認知任務、行走任務、及快/慢雙任務時前額皮質激活程度發現,對于急性亞急性卒中患者來說,單獨行走任務時的前額皮質激活和雙任務時的前額皮質激活程度基本一樣,說明在急性亞急性期前額皮質似乎通過運動任務就可以到達皮質激活的極限。
圖 卒中患者在不同任務下前額皮質激活程度
而Sudeshna等人(2019)對認知能力不同的慢性卒中患者(發病超出6個月)進行了步行任務、連續減7任務、及行走和減7的雙任務時前額皮質進行了觀察,發現雙任務期間的前額葉HbO濃度變化大于單獨行走和減7任務,且在典型步行期間具有較高前額葉激活的人,可解釋為過度激活,可能會受益于減少對行走需求的康復方法。
圖 不同認知能力下前額激活(A)、認知表現(B)、行走狀態(C)之間的區別
小結
fNIRS由于適宜肢體運動場景可以很好地檢測卒中病人腦激活和腦網絡連接,其在卒中發病后的治療評估及幫助病人制定有效的康復方案等方面有巨大前景。
參考文獻
【1】GBD 2016 Lifetime Risk of Stroke Collaborators. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016[J]. New England Journal of Medicine, 2018, 379(25): 2429-2437.
【2】Miyai I , Yagura H , Oda I , et al. Premotor cortex is involved in restoration of gait in stroke[J]. Annals of Neurology, 2002, 52(2):188-194.
【3】Mihara M , Miyai I , Hatakenaka M , et al. Sustained prefrontal activation during ataxic gait: A compensatory mechanism for ataxic stroke?[J]. NeuroImage, 2007, 37(4):1338-1345.
【4】Fujimoto H , Mihara M , Hattori N , et al. Cortical changes underlying balance recovery in patients with hemiplegic stroke[J]. NeuroImage, 2014, 85:547-554.
【5】Kato, H. Near-Infrared Spectroscopic Topography as a Tool to Monitor Motor Reorganization After Hemiparetic Stroke: A Comparison With Functional MRI[J]. Stroke, 2002, 33(8):2032-2036.
【6】Takeda K , Gomi Y , Imai I , et al. Shift of motor activation areas during recovery from hemiparesis after cerebral infarction : A longitudinal study with near-infrared spectroscopy[J]. Neurosci Res, 2007, 59(2):136-144.
【7】Takeda K, Gomi Y, Kato H. Near-infrared spectroscopy and motor lateralization after stroke: a case series study[J]. International Journal of Physical Medicine & Rehabilitation, 2014, 2: 1-6.
【8】Lin P Y, Lin S I, Penney T, et al. Applications of near infrared spectroscopy and imaging for motor rehabilitation in stroke patients[J]. J Med Biol Eng, 2009, 29(5): 210-221.
【9】Saita K , Morishita T , Hyakutake K , et al. Combined therapy using botulinum toxin A and single-joint hybrid assistive limb for upper-limb disability due to spastic hemiplegia[J]. Journal of the Neurological Sciences, 2017, 373:182-187.
【10】Saita K , Morishita T , Arima H , et al. Biofeedback effect of hybrid assistive limb in stroke rehabilitation: A proof of concept study using functional near infrared spectroscopy[J]. Plos One, 2018, 13(1):e0191361.
【11】Bae S J , Jang S H , Seo J P , et al. A pilot study on the optimal speeds for passive wrist movements by a rehabilitation robot of stroke patients: A functional NIRS study[J]. IEEE Int Conf Rehabil Robot. 2017:7-12.
【12】Mihara M , Hattori N , Hatakenaka M , et al. Near-infrared Spectroscopy-mediated Neurofeedback Enhances Efficacy of Motor Imagery-based Training in Poststroke Victims: A Pilot Study[J]. Stroke, 2013, 44(4):1091-1098.
【13】Al-Yahya E , Johansen-Berg H , Kischka U , et al. Prefrontal Cortex Activation While Walking Under Dual-Task Conditions in Stroke: A Multimodal Imaging Study[J]. Neurorehabilitation and Neural Repair, 2015:1545968315613864.
【14】Hermand E, Tapie B, Dupuy O, et al. Prefrontal cortex activation during dual task with increasing cognitive load in subacute stroke patients: A pilot study[J]. Frontiers in Aging Neuroscience, 2019, 11: 160.
【15】Chatterjee S A, Fox E J, Daly J J, et al. Interpreting prefrontal recruitment during walking after stroke: influence of individual differences in mobility and cognitive function[J]. Frontiers in Human Neuroscience, 2019, 13.