高能動力電池是怎樣煉成的
中國科學院院士歐陽明高在學術會議上表示,我國400瓦時/公斤的單體電池有望在2025年實現產業化,這一時間表引起行業熱議,目前特斯拉最新動力電池20700高性能鈷酸鋰電池能量為333瓦時/公斤,這意味著我國在動力電池領域有望從“跟跑”變“領跑”。 被歐陽明高點名的科研項目獲得了國家重點研發計劃的支持,全名為“高比能動力電池的關鍵技術和相關基礎科學問題研究”,該研究基于研究團隊研制出的高容量富鋰錳基的正極材料,汽車動力電池的儲能將有可能提高至400瓦時/公斤。 近年來,在國家政策的大力扶持下,我國新能源汽車得到迅速普及,但“不敢去遠郊區縣”的“梗”至今難以理順。打破500公里的單次行程極限將大大推動電動汽車的推廣,然而汽車承載有限,如何在受限的體積內盡量多地儲備電能成為科研攻關的關鍵目標。 該項目負責人、北京大學教授夏定國表示:“要進一步提高鋰離子電池的能量密度, 正極材料的比容量是關鍵。”據夏定國介紹,針對正極材料的比......閱讀全文
關于鋰離子電池正極材料的簡介
由于鋰電池具有小型、輕量、容量大等特點,因而被稱作是支撐電子產業技術的四個主要領域之一。而單兵系統的發展使得鋰電池在國防中也占據著不可取代的地位。由此可見,對于鋰電池的研究具有非同尋常的意義。 鋰電池通常是指以金屬鋰或鋰離子為正極活性物質的化學電源,可分為一次鋰電池和二次鋰電池。電池通常由正極
鋰離子電池正極材料的基本介紹
目前國內外產業化應用的鋰離子動力電池正極材料有磷酸鐵鋰、錳酸鋰、鈷酸鋰、三元(鎳鈷錳酸鋰、鎳鈷鋁酸鋰)、鎳酸鋰材料 鈷酸鋰的容量可達到140mAh/g,質量輕、體積小、充放電電壓平穩、電導率高、生產工藝簡單;制備方法有高溫固相法、溶膠-凝膠法、沉淀法、噴霧干燥法、水熱合成法;但高的原材料價格、
鋰離子電池正極材料的缺點簡介
比如LiCoO2由于Co價格昂貴,耐過充性差,克容量發揮有限;LiNi0.5Co0.2Mn0.3O2存在壓實密度低、與電解液的兼容性差、軟包中脹氣等問題;LiMn2O4高溫循環和高溫存儲不佳;LiFePO4存在低溫、產品一致性、專利權等問題。隨著手機、平板等消費電子產品電池正日益輕薄化發展,追求
鋰離子電池正極材料的特征介紹
1、鈷酸鋰 鈷酸鋰由于具有生產工藝簡單和電化學性能穩定等優勢,所以最先實現商品化。同時由于鈷酸鋰具有工作電壓高、充放電電壓平穩,適合大電流充放電,比能量高、循環性能好等優點,在要小型充電電池的領域中具有重要應用。 鈷酸鋰離子電池正極材料的缺點是價格昂貴,實際比容量僅為其理論容量的274mAh
鋰離子正極材料錳酸鋰的簡介
錳酸鋰(Lithium Manganate)是一種無機化合物,化學式為LiMn2O4。通常為尖晶石相,黑灰色粉末。易溶于水 [1] 。 錳酸鋰主要為尖晶石型錳酸鋰,尖晶石型錳酸鋰LiMn2O4是Hunter在1981年首先制得的具有三維鋰離子通道的正極材料,一直受到國內外很多學者及研究人員的極
鋰離子電池正極材料的要求介紹
1.鈷酸鋰比容量≥150Ah/kg , 磁性不純物含量≤100ppb,循環壽命300次且容量保持率≥80%。 2.錳酸鋰比容量≥95Ah/kg,磁性不純物含量≤100ppb,循環壽命300次且容量保持率≥80%。 3.磷酸鐵鋰比容量≥140Ah/kg,循環壽命800次且容量保持率≥80%。
鋰離子電池正極材料的研究與發展
鋰離子電池具有比能量高、儲能效率高和壽命長等優點,近年來逐步占據電動汽車、儲能系統以及移動電子設備的主要市場份額。從1990年日本Sony公司率先實現鋰離子電池商業化至今,負極材料一直是碳基材料,而正極材料則有了長足的發展,是推動鋰離子電池性能提升的最關鍵材料。 鋰離子電池正極材料的研究與發展
鋰離子電池的正極材料的基本介紹
在鋰離子電池中,正極材料主要有過渡金屬嵌態氧化物、金屬氧化物、金屬硫化物等,而商用鋰離子電池僅采用過渡金屬嵌態氧化物,其中,過渡金屬嵌態氧化物是鋰離子電池最關鍵的核心材料,是決定鋰電池應用方向的基礎。正極是鋰電池的核心部件,正極質量直接影響電池的性能。鋰離子電池中的正極材料均為氧化物鋰,一般鋰含
鋰離子電池正極材料的組成物質介紹
鋰離子電池自20世紀90年代商業化以來,由于具有工作電壓高、能量密度大、自放電率低、循環壽命長、無記憶效應以及環境友好等優點而成為便攜式電子產品的理想電源。近年來新一代電子產品及動力工具的開發與應用對二次電源系統的比能量和比功率提出了更高要求,而新型高容量電極材料特別是正極材料的設計與制備是獲得
鋰離子電池的正極材料的研發簡介
鎳鈷錳、鎳鈷鋁三元材料的研發主要是提升材料的體積比能量、提高低溫性能、改善電池的安全性;通過調整材料的組成比例實現性能的調控。為了繼續提升電池的能量密度,正極材料將向硅酸鹽復合材料、層狀富鋰錳基材料、硫基材料發展;向更高嵌鋰容量且性能良好鋰脫嵌的可逆性材料方向發展。材料結構研究傾向于層狀結構和尖