<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2023-05-12 16:33 原文鏈接: 20點直播|馬普所教授講述水石墨烯界面

    直播時間:2023年5月12日(周五)20:00-21:30

    直播平臺:

    科學網APP

    (科學網微博直播間鏈接)

    科學網微博

    科學網視頻號

    北京時間2023年5月12日晚八點,iCANX Talks 第143期,本期邀請到馬克斯普朗克(Max Planck)聚合物研究所 Mischa Bonn 教授分享水-石墨烯界面:神奇的量子耦合。

    【嘉賓介紹】

    Mischa Bonn

    Max Planck Institute for Polymer Research

    The Water-Graphene Interface: a Quaint Quantum Couple

    【Abstract】

    The importance of water across many disciplines of science and engineering cannot be overstated. Water shapes our blue planet, is a unique solvent in chemistry, the ‘elixir of life’ in biology, a key corrosion agent in engineering, and a complex fluid with a multitude of anomalies in its phase behavior in physics.

    水在許多科學和工程學科中的重要性不言而喻。水塑造了我們的藍色星球,從化學的角度來說水是一種獨特的溶劑,從生物學的角度來說水是“生命的長生不老藥”,從工程的角度來說水是一種關鍵的腐蝕劑,從物理學的角度來說水是一種具有大量異常相行為的復雜流體。

    Despite its importance, a full understanding of water in its various forms and systems remains challenging. This is particularly true for interfacial water. Water interfaces differ from the bulk, in both their physical structure and chemical composition. A particularly fascinating interface is the water-graphene interface. Water has been reported to flow through carbon nanotubes (essentially curved graphene) with remarkably low resistance. Large-area graphene can serve as an electrochemical electrode, allowing detailed studies of electrochemical processes.

    盡管它很重要,但全面了解水的各種形式和系統仍然具有挑戰性。對于界面水尤其如此。水界面在物理結構和化學成分上都不同于整體。一個特別吸引人的界面是水-石墨烯界面。據報道,水以非常低的阻力流過碳納米管(本質上是彎曲的石墨烯)。大面積石墨烯可以作為電化學電極,可以對電化學過程進行詳細研究。

    Surface-specific spectroscopy on water in contact with graphene enable elucidating electrochemistry at the molecular level, and investigating the origin of the anomalous friction between water as it flows along graphene.

    與石墨烯接觸的水的表面特異性光譜能夠在分子水平上闡明電化學,由此研究水沿石墨烯流動時水之間異常摩擦的起源。

    【BIOGRAPHY】

    Prof. Dr. Mischa Bonn joined the Max Planck Society in 2011 as one of the directors of the Max Planck Institute for Polymer Research, heading the division “Molecular Spectroscopy”. Mischa completed his MSc degree in physical chemistry - with highest honors - in 1993 at the University of Amsterdam (NL) and performed his PhD research (1993-1996) at the FOM-Institute for Atomic and Molecular Physics in Amsterdam. After two postdoctoral stays, at the Fritz Haber Institute (1997-1999) and at Columbia University, New York (1998-1999), he became assistant professor in 1999 at Leiden University, to receive tenure and promotion to associate professor in 2002.

    Mischa Bonn教授于2011年加入Max Planck學會,擔任Max Planck聚合物研究所主任之一,領導“分子光譜學”部門。Mischa于1993年在阿姆斯特丹大學(NL)以最高榮譽完成了物理化學碩士學位,并在阿姆斯特丹的原子和分子物理研究所進行了博士研究(1993-1996)。在弗里茨哈伯研究所(1997-1999)和紐約哥倫比亞大學(1998-1999)做過兩次博士后,此后他于1999年成為萊頓大學的助理教授,并于2002年獲得終身教職并晉升為副教授。

    In 2004, he returned to the Institute for Atomic and Molecular Physics in Amsterdam as group leader. He has been an extraordinary professor at the University of Amsterdam since 2005 and an honorary professor at Mainz University since 2012. Mischa serves as Deputy Editor for The Journal of Chemical Physics, and as a member of the editorial advisory board of J. Am. Chem. Soc., amongst others. Mischa has won several prizes and awards for his work, including the Gold Medal from the Royal Dutch Chemical Society and the Van ’t Hoff Award from the Deutsche Bunsengesellschaft. His scientific interests focus on the development and application of laser-based (ultrafast) spectroscopies to advance our understanding of natural phenomena, specifically at interfaces &ndash; often involving Mischa’s favorite molecule: water.

    相關文章

    為什么人類喜歡水

    在剛剛落下帷幕的巴黎奧運會上,多項水上運動比賽吸引了觀眾。在炎熱的夏天,人們隔著屏幕仿佛都能感受到水帶來的清涼與舒適。自從人類開始探索地球以來,就一直追隨水的“足跡”。大到江河湖海,小到城市噴泉,無論......

    石墨烯中不同色散類型能帶實現選擇性調控

    中國科學技術大學物理系中國科學院強耦合量子材料物理重點實驗室曾長淦教授等與國內外同行合作,利用精心設計的人工籠目超晶格勢場,成功實現了石墨烯中不同色散類型能帶的選擇性調控。相關研究結果于8月6日發表在......

    科學家首次在返回月壤中發現分子水

    日前,中國科學家在嫦娥五號帶回的月球樣本中,發現了月球上的一種富含水分子和銨的未知礦物晶體——ULM-1,標志著科學家首次在返回的月壤中發現了分子水,揭示了水分子和銨在月球上的真實存在形式。相關研究成......

    上海微系統所石墨烯導熱膜尺寸效應研究取得進展

    石墨烯導熱膜是電子器件和系統重要的熱管理材料。近日,中國科學院上海微系統與信息技術研究所納米材料與器件實驗室丁古巧團隊在石墨烯導熱膜尺寸效應研究方面取得進展。該工作通過建立亞微米-微米氧化石墨烯原料橫......

    石墨烯或將為土壤改良與農作物增產開辟新路徑

    北京旭華時代科技有限公司(以下簡稱旭華科技)自研的石墨烯光合作用增長液,在海南省農業科學院農業環境與土壤研究所、湖北省農業科學院糧食作物研究所等科研單位用于小麥、玉米、番茄等作物試驗后,實現了10%至......

    蘭州大學研究團隊稀土元素高效膜分離技術獲進展

    近日,蘭州大學稀有同位素前沿科學中心陳熙萌、李湛團隊的一項題為“構建二維異質結構通道:利用工程化生物膜和石墨烯進行精準的鈧篩分”的突破性研究成果發表在國際頂級期刊《先進材料》(AdvancedMate......

    除氧可提高大規模生產石墨烯質量

    石墨烯被稱為“21世紀的神奇材料”。自2004年發現以來,這種單層碳原子材料一直因其眾多獨特性能而備受推崇。但目前大量生產的石墨烯有個缺點:質量不高。現在,美國哥倫比亞大學和加拿大蒙特利爾大學聯合研究......

    除氧可提高大規模生產石墨烯質量

    科技日報訊 (記者張佳欣)石墨烯被稱為“21世紀的神奇材料”。自2004年發現以來,這種單層碳原子材料一直因其眾多獨特性能而備受推崇。但目前大量生產的石墨烯有個缺點:質量不高。現在,美國哥倫......

    科學家實現3D打印石墨烯微型超級電容器構筑與單片集成

    近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室二維材料化學與能源應用研究組研究員吳忠帥團隊與中國石油大學(華東)教授吳明鉑團隊合作,在3D打印石墨烯微型超級電容器研究方面取得進展,開發出適用......

    空氣+水制羥胺有了新路徑

    硫酸羥胺。課題組供圖羥胺是一種重要的化工中間體,在醫藥、農藥、紡織、電子等領域都有廣泛應用。近日,中國科學技術大學教授曾杰、耿志剛團隊另辟蹊徑,設計出一種全新的、可持續的方法成功合成羥胺。他們通過等離......

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频