清華Nature子刊發表表觀遺傳學新成果
生物通報道:高等生物的基因組DNA圍繞著由四種組蛋白組成的八聚體,形成碟狀的核小體結構。基因組DNA以這樣的形式包裝成為染色質,使DNA受到良好的保護。通過“讀取”模塊識別組蛋白共價修飾是表觀遺傳學調控的一個主要機制。 最近人們發現了多種組蛋白賴氨酸酰化,比如巴豆酰化(Kcr)、丁酰化(Kbu)和丙酰化(Kpr),它們大大拓展了組蛋白賴氨酸修飾的編碼能力。清華大學醫學院的研究人員發現,雙PHD鋅指(DPF)結構域具有特異識別組蛋白巴豆酰化修飾的分子功能。這項研究發表在Nature Chemical Biology雜志上,文章通訊作者是清華大學醫學院的李海濤(Haitao Li)教授。 李海濤研究團隊今年年初首次把YEATS結構域鑒定為組蛋白巴豆酰化閱讀器。現在他們又在組蛋白修飾調控領域取得了重要突破,深化了人們對巴豆酰化修飾生物學的理解和認識。 李海濤團隊對MOZ和DPF2兩類表觀調控因子的DPF結構域開展了系統的定量......閱讀全文
清華Nature子刊發表表觀遺傳學新成果
生物通報道:高等生物的基因組DNA圍繞著由四種組蛋白組成的八聚體,形成碟狀的核小體結構。基因組DNA以這樣的形式包裝成為染色質,使DNA受到良好的保護。通過“讀取”模塊識別組蛋白共價修飾是表觀遺傳學調控的一個主要機制。 最近人們發現了多種組蛋白賴氨酸酰化,比如巴豆酰化(Kcr)、丁酰化(Kbu
DPF脈沖X射線能譜測量
采用濾光法對DPF脈沖X射線源裝置的X射線能譜進行了測量,取得了較好的結果,為輻射效應環境測量提供了一種手段。?
結構域的分類
為了研究蛋白質分子結構的基本規律,人們用不同的方法從不同的角度對已知的蛋白質結構進行分類,有些是基于生物功能,有些是基于結構自身,有些是將二者結合在一起進行分類研究。例如,鋅金屬蛋白酶是一類可催化肽鏈內部肽鍵水解的肽鏈內切酶,盡管所屬的各個亞家族成員的整體空間結構差異顯著,但催化活性部位的結構非常類
抗體的結構域
Ig分子的兩條重鏈和兩條輕鏈都可折疊成數個球形結構域(domain),每個結構域行使其相應的功能。輕鏈有VL和CL兩個結構域;IgG、IgA和IgD的重鏈有VH、CH1、CH2和CH3四個結構域;IgM和IgE的重鏈有五個結構域,即多一個CH4結構域。每個結構域由約110個氨基酸組成,氨基酸序列
曹雪濤、劉娟發表Immunity文章:天然免疫及炎癥調控新靶標
樹突狀細胞(DC)是一類重要的天然免疫細胞,在激活機體抗病原體免疫應答及維持自身免疫耐受過程中發揮關鍵性調控作用。DC的體內遷移對于其成熟活化及功能調控至關重要,DC遷移紊亂可能導致DC在炎癥部位的過度聚集及活化,導致組織過度炎癥,甚至引發炎癥性疾病的發生。探索DC遷移過程的調控機制對于深入了
抑制結構域的定義
中文名稱抑制結構域英文名稱inhibition domain定 義蛋白質三級結構中的一種結構單元,通過該結構域與特異結合的蛋白質作用可以抑制這種蛋白質的活性。應用學科生物化學與分子生物學(一級學科),酶(二級學科)
βαβ結構域的結構功能
中文名稱β-α-β結構域英文名稱β-α-β motif;betaalpha-beta motif定 義蛋白質超二級結構之一,由β折疊-α螺旋-β折疊所構成的功能結構域。應用學科細胞生物學(一級學科),細胞化學(二級學科)
簡述抗體的結構域
Ig分子的兩條重鏈和兩條輕鏈都可折疊成數個球形結構域(domain),每個結構域行使其相應的功能。輕鏈有VL和CL兩個結構域;IgG、IgA和IgD的重鏈有VH、CH1、CH2和CH3四個結構域;IgM和IgE的重鏈有五個結構域,即多一個CH4結構域。每個結構域由約110個氨基酸組成,氨基酸序列
細胞化學基礎βαβ結構域
中文名稱:β-α-β結構域英文名稱:β-α-β motif;betaalpha-beta motif定 義:蛋白質超二級結構之一,由β折疊-α螺旋-β折疊所構成的功能結構域。應用學科:細胞生物學(一級學科),細胞化學(二級學科)
SH結構域的概念
SH結構域(Src homology domain)是真核生物蛋白結構域,能夠與受體酪氨酸激酶磷酸化殘基緊密結合,從而形成蛋白的復合物來進行信號轉導SH3結構域是最初在Src(一種癌基因)的研究中鑒定到的蛋白組件,它能夠識別富含脯氨酸和疏水殘基的蛋白質并與之結合,從而介導蛋白與蛋白的相互作用,SH3
結構域的結構特點
結構域(domain)是位于超二級結構和三級結構間的一個層次。結構域是在蛋白質的三級結構內的獨立折疊單元,通常都是幾個超二級結構單元的組合。在較大的蛋白質分子中,由于多肽鏈上相鄰的超二級結構緊密聯系,進一步折疊形成一個或多個相對獨立的致密三維實體,即結構域。結構域與分子整體以共價鍵相連,一般難以分離
結構域的結構特點
結構域(domain)是位于超二級結構和三級結構間的一個層次。結構域是在蛋白質的三級結構內的獨立折疊單元,通常都是幾個超二級結構單元的組合。在較大的蛋白質分子中,由于多肽鏈上相鄰的超二級結構緊密聯系,進一步折疊形成一個或多個相對獨立的致密三維實體,即結構域。結構域與分子整體以共價鍵相連,一般難以分離
抗體的結構域介紹
Ig分子的兩條重鏈和兩條輕鏈都可折疊成數個球形結構域(domain),每個結構域行使其相應的功能。輕鏈有VL和CL兩個結構域;IgG、IgA和IgD的重鏈有VH、CH1、CH2和CH3四個結構域;IgM和IgE的重鏈有五個結構域,即多一個CH4結構域。每個結構域由約110個氨基酸組成,氨基酸序列具有
曹雪濤團隊發現樹突狀細胞遷移與炎癥調控的新靶標
樹突狀細胞(DC)是一類重要的天然免疫細胞和專制性抗原提呈細胞,在激活機體抗病原體免疫應答及維持自身免疫耐受過程中發揮著關鍵性的調控作用。DC的體內遷移對于其成熟活化及功能調控至關重要,DC遷移紊亂可導致DC在炎癥部位的過度聚集及活化,導致組織過度炎癥,甚至引發炎癥性疾病的發生【1】。探索DC遷
βαβ結構域的基本信息
中文名稱β-α-β結構域英文名稱β-α-β motif;betaalpha-beta motif定 義蛋白質超二級結構之一,由β折疊-α螺旋-β折疊所構成的功能結構域。應用學科細胞生物學(一級學科),細胞化學(二級學科)
結構域的基本性質
又稱基元。蛋白質分子的一種折疊單位,是較大的蛋白質分子或亞基三維折疊中的一個層次或一種相對獨立的三維實體。一條長鏈多肽鏈最后一步折疊就是結構域締合(association),而成一個有活性的蛋白質分子或亞基。在一級(維)結構中的氨基酸序列的某些區域相鄰的氨基酸殘基形成有規則的二級(維)結構(如α-螺
結構域的基本類型
結構域的基本類型有4類:反平行d螺旋結構域(全d結構),平行或混合B折疊結構域(d、p結構)、反平行p折疊結構域(全3結構)和富含金屬或二硫鍵結構域(不規則小蛋白質結構)。
結構域的基本性質
又稱基元。蛋白質分子的一種折疊單位,是較大的蛋白質分子或亞基三維折疊中的一個層次或一種相對獨立的三維實體。一條長鏈多肽鏈最后一步折疊就是結構域締合(association),而成一個有活性的蛋白質分子或亞基。在一級(維)結構中的氨基酸序列的某些區域相鄰的氨基酸殘基形成有規則的二級(維)結構(如α-螺
SH結構域的研究發現
之前的研究表明,絡氨酸磷酸化對SH3結構域的活性調節具有重要作用。來自布拉格查理學的研究人員闡明了該作用,并發現了SH3結構域內重要的序列模體ALYD(Y/F)。利用PhosphoSite Plus據庫,他們發現,到當前止已經有超過100種不同的酪氨酸磷酸化作用發生在SH3結構域內20不同的位點。c
DNA-結構域的結構特點
結構域(domain)是位于超二級結構和三級結構間的一個層次。結構域是在蛋白質的三級結構內的獨立折疊單元,通常都是幾個超二級結構單元的組合。在較大的蛋白質分子中,由于多肽鏈上相鄰的超二級結構緊密聯系,進一步折疊形成一個或多個相對獨立的致密三維實體,即結構域。結構域與分子整體以共價鍵相連,一般難以分離
結構域的基本結構特點
在蛋白質三級結構內的獨立折疊單元。結構域通常都是幾個超二級結構單元的組合至蛋白質多肽鏈在二級結構的基礎上進一步卷曲折疊成幾個相對獨立的近似球形的組裝體。結構域(Structural Domain)是介于二級和三級結構之間的另一種結構層次。所謂結構域是指蛋白質亞基結構中明顯分開的緊密球狀結構區域,又稱
結構域的基本類型
結構域的基本類型有4類:反平行d螺旋結構域(全d結構),平行或混合B折疊結構域(d、p結構)、反平行p折疊結構域(全3結構)和富含金屬或二硫鍵結構域(不規則小蛋白質結構)。
環狀結構域的結構特點
中文名稱環狀結構域英文名稱loop domain定 義核苷酸序列盤繞成不規則環形的二級結構,可以由序列兩端的堿基配對而產生,也可由與蛋白質結合而產生。應用學科遺傳學(一級學科),分子遺傳學(二級學科)
結構域的基本類型
結構域的基本類型有4類:反平行d螺旋結構域(全d結構),平行或混合B折疊結構域(d、p結構)、反平行p折疊結構域(全3結構)和富含金屬或二硫鍵結構域(不規則小蛋白質結構)。
比較組蛋白與非組蛋白的特點及其作用
組蛋白:特點:進化上的極端保守性;無組織特異性;肽鏈上氨基酸分布的不對稱性;組蛋白的修飾作用。作用:1,核小體組蛋白,幫助DNA卷曲形成核小體的穩定結構2,H1組蛋白,在構成核小體時期連接作用,賦予染色體極性3,對染色體DNA的包裝起著重要作用非組蛋白:特點:非組蛋白是一類酸性蛋白質,富含天冬氨酸和
表觀遺傳之組蛋白修飾—組蛋白乙酰化
大家好,我又來啦~~今天給大家放送的是表觀遺傳之組蛋白修飾相關的內容噢,組蛋白修飾也是一個比較復雜的過程,今天呢,我們就給大家講講組蛋白乙酰化及相關的產品。?一 組蛋白修飾?真核生物染色質的基本結構單位是核小體,它由約 146 bp DNA 纏繞組蛋白八聚體組成,其中組蛋白八聚體包含 2 (H2
比較組蛋白與非組蛋白的特點及其作用
組蛋白:特點:進化上的極端保守性;無組織特異性;肽鏈上氨基酸分布的不對稱性;組蛋白的修飾作用。作用:1,核小體組蛋白,幫助DNA卷曲形成核小體的穩定結構2,H1組蛋白,在構成核小體時期連接作用,賦予染色體極性3,對染色體DNA的包裝起著重要作用非組蛋白:特點:非組蛋白是一類酸性蛋白質,富含天冬氨酸和
組蛋白的簡介
重組蛋白的產生是應用了重組DNA或重組RNA的技術從而獲得的蛋白質。目前,體外重組蛋白的生產主要包括四大系統:原核蛋白表達,哺乳動物細胞蛋白表達,酵母蛋白表達及昆蟲細胞蛋白表達。生產的蛋白在活性和應用方法方面均有所不同。根據自身的下游運用選擇合適的蛋白表達系統,提高表達成功率。
組蛋白的簡介
組蛋白(histone)是指所有真核生物的細胞核中,與DNA結合存在的堿性蛋白質的總稱。其分子量約10000~20000。 真核生物體細胞染色質中的堿性蛋白質,含精氨酸和賴氨酸等堿性氨基酸特別多,二者加起來約為所有氨基酸殘基的1/4。組蛋白與帶負電荷的雙螺旋DNA結合成DNA-組蛋白復合物。因
組蛋白的特點
染色體(chromosome)是基因的載體,染色體包括DNA和蛋白質兩部分。真核細胞染色體上的蛋白質主要包括組蛋白和非組蛋白。組蛋白是一類較小而帶有正電荷的核蛋白,與DNA有很高的親和力。組蛋白是染色體的結構蛋白,它與DNA組成核小體。由DNA和組蛋白組成的染色質(chromatin)纖維細絲是許多