有機太陽能電池界面修飾新進展
近日,中國科學院國家納米科學中心研究員周惠瓊課題組與研究員裘曉輝、張勇課題組合作,在有機太陽能電池界面層的納米級表面能分布調控方面取得新進展。相關研究成果發表于Joule雜志(Joule, 2021, https://doi.org/10.1016/j.joule.2021.09.001)。 在溶液法制備的有機太陽能電池中,表面能對體異質結薄膜形貌的形成起到關鍵作用。通過給體與受體的表面能差異可以預測有機本體異質結(BHJ)薄膜中兩相的混溶性,而底部界面層的表面能可以調節體異質結的垂直分布和分子堆積取向。薄膜的表面能常采用Owens-Wendt模型通過測量接觸角的方法得到,但這種測試方法無法反映納米尺寸范圍內的表面能分布,無法直接解釋體異質結結構中納米級的堆積和相分離變化。 周惠瓊課題組長期致力于溶液法太陽能電池的界面研究,針對界面層表面能的調控開展了一系列的研究。通過引入氧化鎢(WOx)納米顆粒提高了聚3,4-乙烯二氧......閱讀全文
納米結構讓硅薄膜太陽能電池成本減半
據美國物理學家組織網近日報道,新加坡科學家將一個新奇的納米結構(比人的頭發絲小數千倍)置于非結晶硅制成的太陽能電池的表面,研制出了一種轉化效率高、成本低的新型薄膜太陽能電池。科學家們認為,最新技術有望將太陽能電池的制造成本減半。 目前太陽能電池一般都由高品質的硅晶體制成,因此,大大提
什么是薄膜太陽能電池?薄膜太陽能電池有什么特點
什么是薄膜太陽能電池?薄膜太陽能電池是緩解能源危機的新型光伏器件。薄膜太陽能電池可以使用在價格低廉的陶瓷、石墨、金屬片等不同材料當基板來制造,形成可出現電壓的薄膜厚度僅需數μm,目前轉換效率最高可以達13%。薄膜電池太陽電池除了平面之外,也因為具有可撓性可以制作成非平面構造其應用范圍大,可與建筑物結
薄膜太陽能電池種類
為了尋找單晶硅電池的替代品,人們除開發了多晶硅,非晶硅薄膜太陽能電池外,又不斷研制其它材料的太陽能電池。其中主要包括砷化鎵III-V族化合物,硫化鎘,碲化鎘及銅錮硒薄膜電池等。
什么是薄膜太陽能電池?
薄膜電池顧名思義就是將一層薄膜制備成太陽能電池,其用硅量極少,更容易降低成本,同時它既是一種高效能源產品,又是一種新型建筑材料,更容易與建筑完美結合。在國際市場硅原材料持續緊張的背景下,薄膜太陽電池已成為國際光伏市場發展的新趨勢和新熱點。
薄膜太陽能電池的參數
薄膜太陽能電池的參數薄膜太陽能電池它性能的好壞以及壽命長短主要是由其參數而決定的,薄膜太陽能電池的主要性能包括額定容量、額定電壓、充放電速率、阻抗、壽命和自放電率。1、額定容量在設計規定的條件(如溫度、放電率、終止電壓等)下,電池應能放出的最低容量,單位為安培小時,以符號C表示。容量受放電率的影響較
蘇州納米所薄膜太陽能電池能級排布研究取得新進展
近年來,新型薄膜太陽能電池,例如有機/無機雜化鈣鈦礦器件、有機光伏器件等,以其低成本、高效率、結構簡單、柔性攜帶等優點,引起了廣泛關注。對于薄膜太陽能電池而言,器件能級排布決定著光生載流子的分離、復合、傳輸和收集等微觀物理過程,是器件性能的重要決定因素之一。如何有效調控和表征器件能級排布,是理解
太陽能薄膜電池研究獲得重要進展
德國美因茨大學13日發表公報說,該校研究人員參與的太陽能薄膜電池研究項目取得重要進展,有望使太陽能薄膜電池突破目前20%光電轉化率的紀錄。 目前光電轉化率最高的是銅銦鎵硒(CIGS)太陽能薄膜電池,可達20%,但與超過30%的理論值仍相距甚遠,其主要難題是材料中的
CIGS薄膜太陽能電池板
由Cu(銅)、In(銦)、Ga(鎵)、Se(硒)四種元素構成最佳比例的黃銅礦結晶薄膜太陽能電池,是組成電池板的關鍵技術。由于該產品具有光吸收能力強,發電穩定性好、轉化效率高,白天發電時間長、發電量高、生產成本低以及能源回收周期短等諸多優勢,CIGS太陽能電池已是太陽能電池產品的明日之星,可以與傳統的
薄膜太陽能電池獲得新突破
在2014年7月10~11日舉辦的研討會“思考有機電子新方向”上,日本理化學研究所創發分子功能研究組高級研究員尾坂格登臺發表演講,介紹了旨在應用于有機薄膜太陽能電池的高分子半導體的開發情況,演講題目為“基于分子設計的高分子半導體高階結構控制”。薄膜太陽能電池獲得新突破 一般來說,作為應用于有
薄膜太陽能電池的模塊結構
薄膜太陽能模塊是由玻璃基板、金屬層、透明導電層、電器功能盒、膠合材料、半導體層等所構成的。
薄膜太陽能電池的制造技術
薄膜太陽電池可以使用在價格低廉的玻璃、塑料、陶瓷、石墨,金屬片等不同材料當基板來制造,形成可產生電壓的薄膜厚度僅需數μm,因此在同一受光面積之下可較硅晶圓太陽能電池大幅減少原料的用量(厚度可低于硅晶圓太陽能電池90%以上),目前實驗室轉換效率最高已達20%以上,規模化量產穩定效率最高約13%。薄膜太
碳納米管復合薄膜/硅異質結太陽能電池研究獲進展
目前,傳統硅基太陽能電池依然占據主流光伏市場,然而,限制硅基光伏產業發展的主要因素是其生產成本偏高、制備過程繁瑣。所以發展高效率、低成本、大面積和適合大規模生產的太陽能電池已迫在眉睫。宏觀碳納米管薄膜具有良好的力學、電學、光學等性質,而且是柔性的。通過調節生長參數,可以獲得高透光率(可達95%)
提高薄膜太陽能電池效率的方法
? 降低硅太陽能電池成本的方法之一是盡量減少高質量硅材料的使用量,如薄膜太陽能電池。不過這種太陽能電池的效率只達到了約11-12%。研究人員們正在尋求提升其效率的方法。最近取得突破的技術有通過干法絨面優化上表面的結構和在外延層/襯底界面處插入一個中間多孔硅反射鏡。采用這兩種方式可將太陽能電池的效率
提高薄膜太陽能電池效率的方法
降低硅太陽能電池成本的方法之一是盡量減少高質量硅材料的使用量,如薄膜太陽能電池。不過這種太陽能電池的效率只達到了約11-12%。研究人員們正在尋求提升其效率的方法。最近取得突破的技術有通過干法絨面優化上表面的結構和在外延層/襯底界面處插入一個中間多孔硅反射鏡。采用這兩種方式可將太陽能電池的效率提升到
什么是非晶硅薄膜太陽能電池?
非晶硅薄膜太陽能電池是一種以非晶硅化合物為基本組成的薄膜太陽能電池。按照材料的不同,當前硅太陽能電池可分為三類:單晶硅太陽能電池、多晶硅薄膜太陽能電池和非晶硅薄膜太陽能電池三種。
CIGS薄膜太陽能電池的太陽能電池的工作原理及特性
銅銦鎵硒薄膜太陽能電池是20世紀80年代后期開發出來的新型太陽能電池,典型的多層膜結構如下:金屬刪、減反射膜、窗口層、過度層、光吸收層、背電極和基板。 CIS薄膜的禁帶寬度為1.04ev,當摻入適當的Ga以替代部分In成為CuInSe2和CuGaSe2的固溶晶體簡稱CIGS,薄膜的禁帶寬度可在1.0
英國合作研發新型薄膜太陽能電池
英國萊斯特大學8月10日宣布,該大學正與一家挪威公司合作研發像玻璃貼膜一樣的新型太陽能電池,它既能發電還可透光,有望廣泛應用于建筑物屋頂或門窗等處。 據介紹,這種電池材料是通過在透明化合物中嵌入直徑10納米左右的金屬微粒而獲得。它的突出特點是可以在吸收一部分光能發電的同時還透過一部分光,這樣就
什么是碲化鎘薄膜太陽能電池?
碲化鎘薄膜太陽能電池簡稱CdTe電池,它是一種以p型CdTe和n型CdS的異質結為基礎的薄膜太陽能電池。
薄膜太陽能電池的分類與發展歷史
薄膜太陽能電池種類 為了尋找單晶硅電池的替代品,人們除開發了多晶硅,非晶硅薄膜太陽能電池外,又不斷研制其它材料的太陽能電池。其中主要包括砷化鎵III-V族化合物,硫化鎘,碲化鎘及銅錮硒薄膜電池等。 上述電池中,盡管硫化鎘薄膜電池的效率較非晶硅薄膜太陽能電池效率高,成本較單晶硅電池低,并且也易于大
碲化鎘薄膜太陽能電池的優點
1、理想的禁帶寬度:CdTe的禁帶寬度一般為1.47eV,CdTe的光譜響應和太陽光譜非常匹配。2、高光吸收率:CdTe的吸收系數在可見光范圍高達104cm-1以上,95%的光子可在1μm厚的吸收層內被吸收。3、轉換效率高:碲化鎘薄膜太陽能電池的理論光電轉換效率約為28%。4、電池性能穩定:一般的碲
碲化鎘薄膜太陽能電池的結構
碲化鎘薄膜太陽能電池是在玻璃或是其它柔性襯底上依次沉積多層薄膜而構成的光伏器件。一般標準的碲化鎘薄膜太陽能電池由五層結構組成:1、玻璃襯底:主要對電池起支架、防止污染和入射太陽光的作用。2、TCO層:即透明導電氧化層。主要起的是透光和導電的作用。3、CdS窗口層:n型半導體,與p型CdTe組成p-n
納米夾層技術為太陽能電池“減肥”
據物理學家組織網6月25日報道,美國北卡羅來納州立大學的科研人員表示,他們能夠借助納米夾層技術制成更“苗條”的薄膜太陽能電池,而不影響電池吸收太陽能的能力。同時,這也將大幅降低新型電池的制造成本,并可廣泛應用于其他眾多太陽能電池材料,如碲化鎘和銅銦鎵硒(CIGS)等。 論文的聯合作者、該校
鋁粒子可提高薄膜太陽能電池轉化效率
據美國物理學家組織網2月10日報道,新加坡A*STAR研究院高性能計算機研究所的科研人員尤里·阿基莫夫和魏誠美(音譯)發現,通過沉積鋁粒子的方法可以提高薄膜太陽能電池的光電轉化效率,這種金屬納米粒子能防止光線的逃逸和反射,使更多的直射光直接進入太陽能電池。阿基莫夫說,該技術可以使我們進一步降低太
我國最大硅基薄膜太陽能電池項目投產
薄膜太陽能電池是新型高效率、高穩定性硅基薄膜太陽能電池,具有成本低、弱光響應好、能量返還期短等突出優點。6月15日,由漢能控股集團投資興建的我國最大的漢能硅基薄膜太陽能電池項目在成都雙流西航港經濟開發區建成投產。這標志著我國有自主知識產權的薄膜太陽能電池量產取得重大突破,也標
IBM發布全球最高效新型薄膜太陽能電池
IBM最近發布了一款新型薄膜太陽能電池。這款電池將同類電池所達到的9.6%的能效功率提高到了40%。它的原料成本比傳統的太陽能電池低。IBM用了9個月時間來研發這款薄膜太陽能電池,用銅、錫、鋅、硒來代替昂貴的銅銦鎵硒化物或碲花鎘作為原材料。此外,科學家們還采用了更簡單的溶劑,這種溶劑價格
理解薄膜太陽能電池有效率的原因
該圖顯示了使用一種新工藝開發的在聚酰亞胺薄膜上的高效、柔性CIGS電池。 許多年以來,科學家和工程師一直在通過開發廉價的太陽能電池,既高效又容易制造,讓它能夠大量生產,從而設法提供低成本太陽能。如今由瑞士聯邦材料科學和技術研究所(Empa)的科研人員Ayodhya N. Tiwari領
大面積高效率太陽能電池薄膜
僅在全球太陽能豐沛的戈壁沙漠地區進行鋪設,低成本的鈣鈦礦太陽能電池所發出的電能就可滿足全球能源需要,這一設想很快就有可能變成現實。上海交通大學9月11日傳出消息,《自然》在線發表其材料科學與工程學院金屬基復合材料國家重點實驗室韓禮元教授團隊的研究成果:使用更加經濟安全的新方法,制備出比蟬翼還薄數十倍
20182022年CIGS薄膜太陽能電池預測
2016年12月發布的《太陽能發展“十三五”規劃》指出,到2020年底,太陽能發電裝機達到1.1億千瓦以上,其中,光伏發電裝機達到1.05億千瓦以上,在“十二五”基礎上每年保持穩定的發展規模;太陽能熱發電裝機達到500萬千瓦;太陽能利用集熱面積達到8億平方米;到2020年,太陽能年利用量達到1.4億
非晶硅薄膜太陽能電池的性能特點
非晶硅薄膜太陽能電池成本低重量輕,便于大規模生產,有極大的潛力。非晶態硅,其原子結構不像晶體硅那樣排列得有規則,而是一種不定形晶體結構的半導體。非晶硅屬于直接帶系材料,對陽光吸收系數高,只需要1μm厚的薄膜就可以吸收80%的陽光。非晶硅薄膜太陽能電池于1976年問世,南于硅原料不足和價格上漲,促進了
薄膜太陽能電池的類型及其優缺點詳解
薄膜太陽能電池要達到兩個目標:一是要具有足夠的柔韌性,能夠在大型建筑材料表面附著,二是要實現和傳統太陽能電池一樣的效率,甚至更高。不同的制備技術所得的薄膜太陽能板和傳統的太陽能板相比,具有不同的優缺點。通常對薄膜太陽能板的命名來自于半導體材料的類型。1、不定形硅(a-Si)不定形硅是最早的也是最成熟