鐵磁形狀記憶合金或可實現工程應用
哈爾濱工業大學材料學院副教授張學習與美國西北大學合作開展的具有大磁感生應變性能的泡沫鎳錳鎵合金的制備過程與組織性能研究,首次在泡沫材料中發現大的磁感生應變。《自然—材料學》雜志近期刊登了這一研究成果并給予高度評價。 鎳錳鎵合金具有磁感生應變特性最早發現于1996年,2002年發現鎳錳鎵單晶具有高達9.6%的磁感生應變性能,然而單晶制備過程復雜、容易發生成分偏析,制備困難且成本很高;相反,多晶鎳錳鎵合金容易制備且成本低,在多晶合金中實現高的磁感生應變性能成為該領域研究的熱點和難點。 張學習在美國西北大學訪問研究期間,利用哈工大金屬基復合材料課題組多年來采用的擠壓鑄造技術,制備了多晶鎳錳鎵泡沫材料,發現該方法制備的材料成分偏析小、孔隙分布均勻、馬氏體孿晶穿越了泡沫材料中的節點及孔棱,奧氏體—馬氏體相轉變溫度稍高于室溫,在0.97特斯拉強度磁場下實現了高達8.7%的可逆磁感生應變,達到目前多晶鎳錳鎵材料磁感......閱讀全文
鐵磁形狀記憶合金或可實現工程應用
哈爾濱工業大學材料學院副教授張學習與美國西北大學合作開展的具有大磁感生應變性能的泡沫鎳錳鎵合金的制備過程與組織性能研究,首次在泡沫材料中發現大的磁感生應變。《自然—材料學》雜志近期刊登了這一研究成果并給予高度評價。 鎳錳鎵合金具有磁感生應變特性最早發現于1996年,2002
高電壓鎳錳酸鋰材料介紹
高電壓鎳錳酸鋰材料由于其低成本,高能量密度被認為是下一代電動汽車的優選材料,但是其高電壓特性將會導致其界面與電解液劇烈反應,解決此問題可以從電解液和正極材料兩方面入手。對于正極材料我們分為以下幾點:1.前驅體選擇:首先是合成前前驅體的選擇,從理論上來講我們只需要得到鎳和錳以1:3的原子比均勻混合的鎳
為什么一些材料可以長在泡沫鎳上
超級電容器,將材料涂到泡沫鎳上制備工作電極,是涂單面還是雙面超級電容選用石墨做電極材料: 第一,是因為石墨材料的電化學穩定性較好,可以讓超級電容承受較高單體電壓。電極不容易損耗。第二,是因為石墨材料加工速度快,成本低。第三,是因為石墨材料,重量輕,導熱和導電性能好。用于超級電容器的電極材料主要是碳材
模板法制備鎳鈷錳三元正極材料
模板法憑借其空間限域作用和結構導向作用,在制備具有特殊形貌和精確粒徑的材料上有著廣泛應用。 納米多孔的333型粒子一方面可以極大縮短鋰離子擴散路徑,另一方面電解液可以浸潤至納米孔中為Li+擴散增加另一通道,同時納米孔還可以緩沖長循環材料體積變化,從而提高材料穩定性。以上這些優點使得333型在水
鎳鈷錳三元材料的分析研究
鎳鈷錳三元材料是近年來開發的一類新型鋰離子電池正極材料,具有容量高、循環穩定性好、成本適中等重要優點,由于這類材料可以同時有效克服鈷酸鋰材料成本過高、錳酸鋰材料穩定性不高、磷酸鐵鋰容量低等問題,在電池中已實現了成功的應用,并且應用規模得到了迅速的發展。據高工產研鋰電研究所(GGII)披露,201
動力型鎳鈷錳酸鋰材料的相關介紹
一直以來,動力電池的路線存在很大爭議,因此磷酸鐵鋰、錳酸鋰、三元材料等路線都有被采用。國內動力電池路線以磷酸鐵鋰為主,但隨著特斯拉火爆全球,其使用的三元材料路線引起了一股熱潮。 磷酸鐵鋰雖然安全性高,但其能量密度偏低軟肋無法克服,而新能源汽車要求更長的續航里程,因此長期來看,克容量更高的材料將
溶膠凝膠法制備鎳鈷錳三元正極材料
溶膠凝膠法(sol-gel)最大優點是可在極短時間內實現反應物在分子水平上均勻混合,制備得到的材料具有化學成分分布均勻、具有精確的化學計量比、粒徑小且分布窄等優點。 MEI等采用改良的sol-gel法:將檸檬酸和乙二醇加入到一定濃度鋰鎳鈷錳硝酸鹽溶液中形成溶膠,然后加入適量的聚乙二醇(PEG-
只有泡沫鎳和材料怎么制備超級電容器工作電極
超級電容器,將材料涂到泡沫鎳上制備工作電極,是涂單面還是雙面超級電容選用石墨做電極材料:第一,是因為石墨材料的電化學穩定性較好,可以讓超級電容承受較高單體電壓。電極不容易損耗。第二,是因為石墨材料加工速度快,成本低。第三,是因為石墨材料,重量輕,導熱和導電性能好。用于超級電容器的電極材料主要是碳材料
噴霧干燥法制備鎳鈷錳三元正極材料
噴霧干燥法因自動化程度高、制備周期短、得到的顆粒細微且粒徑分布窄、無工業廢水產生等優勢,被視為是應用前景非常廣闊的一種生產三元材料的方法。 OLJACA等采用噴霧干燥法制備了組成為333三元材料,在60~150℃高溫下,鎳鈷錳鋰硝酸鹽迅速霧化,在短時間內水分蒸發,原料也迅速混勻,最后得到的粉末
鎳鈷錳三元正極材料制備固相法介紹
三元材料創始人OHZUKU最初就是采用固相法合成333材料,傳統固相法由于僅簡單采用機械混合,因此很難制備粒徑均一電化學性能穩定的三元材料。為此,HE等、LIU等采用低熔點的乙酸鎳鈷錳,在高于熔點溫度下焙燒,金屬乙酸鹽成流體態,原料可以很好混合,并且原料中混入一定草酸以緩解團聚,制備出來的333
鎵氮砷合金材料太陽能電池效率達40%
硅太陽能電池的效率一般只能達到20%,效率更高的電池都很復雜,也很昂貴。據美國物理學家組織網1月24日報道,美國勞倫斯·伯克利國家實驗室科研人員伍雷戴克·瓦盧克維領導的研究小組,用一種名為鎵氮砷(GaNAs)合金的特殊材料和簡單的組合方法,使他們制造的多帶型太陽能電池效率達到40%
鎳鈷錳三元正極材料制備不同方法的對比
固相法雖工藝簡單,但材料形貌、粒徑等難以控制;共沉淀法通過控制溫度、攪拌速度、pH值等可制備粒徑分布窄、振實密度高等電化學性能優異的三元材料,但是共沉淀法需要過濾、洗滌等工序,產生大量工業廢水;溶膠凝膠法、噴霧熱解法和模板法得到的材料元素化學計量比精確可控、顆粒小且分散性好,材料電池性能優異,但
鎳鈷錳三元正極材料制備共沉淀法介紹
共沉淀法是基于固相法而誕生的方法,它可以解決傳統固相法混料不均和粒徑分布過寬等問題,通過控制原料濃度、滴加速度、攪拌速度、pH值以及反應溫度可制備核殼結構、球形、納米花等各種形貌且粒徑分布比較均一的三元材料。 原料濃度、滴加速度、攪拌速度、pH值以及反應溫度是制備高振實密度、粒徑分布均一三元材
硅錳合金中錳的測定高氯酸氧化法
用干燥的300mL三角瓶稱取0.1000g樣品,加15mL磷酸(濃),5mL硝酸(濃),8mL高氯酸(濃),于電爐盤上加熱(溫度不要太高,300攝氏度左右就可以了,我基本上都是控制讓電爐絲微紅,溫度控制挺關鍵的,最好是讓所有樣品的加熱條件一致,我還試過在電熱板上做,結果倒是不錯,不過時間長了一點),
EDTA絡合滴定法測定金鎵合金中的鎵
一、方法要點試樣用鹽酸和硝酸溶解,加鹽酸蒸發驅除硝酸,用亞硫酸還原金。加一定過量的EDTA溶液絡合鎵,在pH5.8的六亞甲基四胺緩沖溶液中,以二甲酸橙作指示劑,用鋅標準溶液返滴定以測定鎵量。本法適用于分析金鎵合金中3%~5%的鎵。二、試劑(1)氯化鈉、六亞甲基四胺。(2)二甲酚橙:0.2%溶液。(3
砷化鎵材料的材料特性
GaAs擁有一些較Si還要好的電子特性,使得GaAs可以用在高于250 GHz的場合。如果等效的GaAs和Si元件同時都操作在高頻時,GaAs會產生較少的噪音。也因為GaAs有較高的崩潰壓,所以GaAs比同樣的Si元件更適合操作在高功率的場合。因為這些特性,GaAs電路可以運用在移動電話、衛星通訊、
高壓實鎳鈷錳酸鋰正極材料通用技術要求--產品水分測定
本標準規定了高壓實鎳鈷錳酸鋰正極材料的術語和定義、要求、試驗方法、檢驗規則、標忐、包裝、運輸、貯存、質量證明書。 本標準適用于高壓實鎳鈷錳酸鋰正極材料(以下簡稱產品)。 術語和定義 GB/T 20252-2014 界定的以及下列術語和定義適用于本文件。為了便于使用,以重復列出了
關于鎳鈷錳三元鋰離子電池材料的用途介紹
1、鈷的用途在于可以穩定材料的層狀結構,而且可以提高材料的循環和倍率性能,但過高的鈷含量會導致實際容量降低; 2、鎳是材料的重要活性物質之一,用途在于提高新增材料的體積能量密度.但鎳含量高(即高鎳)的三元材料也會導致鋰鎳混排,從而造成鋰的析出; 3、錳有良好的電化學惰性,使材料始終保持穩定的
鋰離子電池正極材料錳鎳鈷復合氧化物的簡介
層狀錳鎳鈷復合氧化物正極材料綜合了LiCoO2、LiNiO2、LiMnO2 三種層狀材料的優點,其綜合性能優于以上任一單一組分正極材料,存在明顯的三元協同效應:通過引入Co,能夠減少陽離子混合占位情況,有效穩定材料的層狀結構;通過引入Ni,可提高材料的容量;通過引入Mn,不僅可以降低材料成本,而
電源技術對電子變壓器的要求二
電子變壓器從功能上區分主要有變壓器和電感器2種。特殊元件完成的功能另外討論。變壓器完成的功能有3個:功率傳送、電壓變換和絕緣隔離。電感器完成功能有2個:功率傳送和紋波抑制。功率傳送有2種方式。一種是變壓器傳送方式,即外加在變壓器原繞組上的交變電壓,在磁芯中產生磁通變化,使副繞組感應電壓,加在負載上,
鎳鈷錳酸鋰的應用前景
由于鎳鈷錳酸鋰是在鈷酸鋰基礎上經過改進而成具有較高安全性的正極材料,自提出以來,其憑借容量高、熱穩定性能好、充放電壓寬等優良的電化學性能而受到廣泛關注,被視為下一代鋰離子電池正極材料的理想之選。鎳鈷錳酸鋰在層狀結構中以Ni和Mn取代部分Co,減少了鈷的用量,降低了成本,而且提高了能量密度,已在動力型
鎳鈷錳酸鋰的優點介紹
1、高能量密度,理論容量達到280 mAh/g,產品實際容量超過150 mAh/g; 2、循環性能好,在常溫和高溫下,均具有優異的循環穩定性; 3、電壓平臺高,在2.5-4.3/4.4V電壓范圍內循環穩定可靠; 4、熱穩定性好,在4.4V充電狀態下的材料熱分解穩定; 5、循環壽命長,1C
鎳鈷錳酸鋰的制備方法
鎳鈷錳酸鋰的制備方法主要采用高溫固相合成法,共沉淀法。主要采用錳化合物、鎳化合物及鈷酸鋰和氫氧化鋰作為原料,通過水熱反應,得到鋰、錳、鈷、鎳結合良好的前體,再對前體補充配入鋰源并研磨得到前軀體,經過煅燒制備得到鎳鈷錳酸鋰。隨著全球資源的日益緊張及環境的壓力,電池材料必須走定線循環之路。
鎳鈷錳酸鋰的技術優點
鎳鈷錳酸鋰的優點1、高能量密度,理論容量達到280 mAh/g,產品實際容量超過150 mAh/g;2、循環性能好,在常溫和高溫下,均具有優異的循環穩定性;3、電壓平臺高,在2.5-4.3/4.4V電壓范圍內循環穩定可靠;4、熱穩定性好,在4.4V充電狀態下的材料熱分解穩定;5、循環壽命長,1C循環
鎳鈷錳酸鋰性能特點介紹
(1)高能量密度,理論容量達到280 mAh/g,產品實際容量超過150 mAh/g; (2)循環性能好,在常溫和高溫下,均具有優異的循環穩定性; (3)電壓平臺高,在2.5-4.3/4.4V電壓范圍內循環穩定可靠; (4)熱穩定性好,在4.4V充電狀態下的材料熱分解穩定; (5)循環壽
紫外分光光度計在農業檢測上的用途
紫外可見光譜儀涉及的波長范圍是0.2--0.8微米(對應波數50000-12500厘米-1),它在有機化學研究中得到廣泛的應用。通常用作物質鑒定、純度檢查,有機分子結構的研究。在定量方面,可測定結構比較復雜的化合物和混合物中各組分的含量,也可以測定物質的離解常數,絡合物的穩定常數,物質分子量鑒別和微
電子變壓器的用途
電子變壓器在傳統照明燈具中的應用十分普遍,如日光燈、臺燈、節能燈、廣告燈等等幾乎都可以使用電子變壓器,并且采用電子變壓器之后,可以省掉啟動器。在LED照明中,新品也大都采用電子變壓器。主要是電子變壓器在變壓功能上,效率高、成本底,節約鐵銅材料,結構小,重量輕。不足的是耐壓和耐大電流沖擊性能較鐵質
鎳鈷錳三元鋰離子電池材料的用途及現狀分析
鎳鈷錳三元鋰離子電池材料的用途及現狀分析。在現有的二次電池體系中,無論從發展空間,還是從壽命、比能量、工作電壓和自放電率等技術指標來看,鋰離子電池都是當前最有競爭力的二次電池。良好的綜合性能,使得三元材料成為目前市場的主流,以及最具潛力的一種電池正極材料,在數碼電子產品、電動自行車、電動工具等領
紅外、微波等新型焙燒方法制備鎳鈷錳三元正極材料
紅外、微波等新型電磁加熱相對于傳統電阻加熱,可大大縮短高溫焙燒時間同時可一步制備碳包覆的復合正極材料。 HSIEH等采用新型紅外加熱焙燒技術制備了三元材料,首先將鎳鈷錳鋰乙酸鹽加水混合均勻,然后加入一定濃度的葡萄糖溶液,真空干燥得到的粉末在紅外箱中350℃焙燒1h,然后在900℃(N2氣氛下)
國內力推新材料標準化-稀有金屬產業迎來機遇
工信部力推新材料標準化稀有金屬產業迎來機遇 工業和信息化部近日出臺了《新材料產業標準化工作三年行動計劃》。《計劃》提出,到2015年,完成200項重點標準制修訂工作,立項并啟動300項新材料標準研制,開展50項重點標準預研究,爭取覆蓋 “十二五”規劃提出的400個重點新材料產品,基本形