激光共聚焦顯微拉曼光譜技術簡介
拉曼信號是一種由入射光引起的分子的非彈性散射信號,拉曼光譜技術無需樣品準備和制備過程,簡單,可重復且能夠進行無損傷定性定量分析。水的拉曼散射微弱,拉曼光譜也因此成為研究水溶液中的生物樣品和化學化合物的理想工具。激光共聚焦顯微拉曼光譜技術是一種激光為基礎的分析技術,將拉曼光譜分析技術與顯微分析技術結合,采用低功率激光器、高轉換效率的全息技術,更易于直接獲得大量的價值信息,具有非破壞、非侵入、精細分辨、不用試劑和高度自動化等優點,能夠快速和非侵入地對細胞和組織進行生化分析,并能提供活體的分子結構信息。利用拉曼光譜對樣品進行測定具有很多優點,如選擇性高、無需復雜的樣品準備、分析混合物時不需分離以及可用于實時跟蹤測量等。共焦顯微技術應用于拉曼光譜研究后,提高了儀器的靈敏性和分辨率。目前已逐漸廣泛應用于材料學、化工學、藥學、生物學、礦物學、寶石鑒定學、公安法學等領域。 WITec 產品系列包括拉曼、AFM 和 SNOM 分析成像......閱讀全文
激光共聚焦顯微拉曼光譜技術簡介
拉曼信號是一種由入射光引起的分子的非彈性散射信號,拉曼光譜技術無需樣品準備和制備過程,簡單,可重復且能夠進行無損傷定性定量分析。水的拉曼散射微弱,拉曼光譜也因此成為研究水溶液中的生物樣品和化學化合物的理想工具。激光共聚焦顯微拉曼光譜技術是一種激光為基礎的分析技術,將拉曼光譜分析技術與顯微分析技術
簡介激光顯微共焦拉曼光譜儀拉曼位移
在透明介質散射光譜中,入射光子與分子發生非彈性散射,分子吸收頻率為ν0 的光子,發射ν0-ν1的光子,同時電子從低能態躍遷到高能態(斯托克斯線);分子吸收頻率為ν0的光子,發射ν0+ν1的光子,同時電子從高能態躍遷到低能態(反斯托克斯線)。靠近瑞利散射線的兩側出現的譜線稱為小拉曼光譜;遠離瑞利散
顯微共焦激光拉曼光譜儀
顯微共焦激光拉曼光譜儀是一種用于物理學、材料科學領域的分析儀器,于2011年11月1日啟用。 技術指標 光譜范圍:50-4000cm-1;激光波長:532nm;激光功率:50mW;信噪比:單晶硅三階峰信噪比大于10.。 主要功能 能夠提供快速、簡單、方便、可重復、且更重要的是無損傷的定性
激光顯微共焦拉曼光譜儀的拉曼效應
光散射是自然界常見的現象。晴朗的天空之所以呈藍色、早晚東西方的空中之所以出現紅色霞光等,都是由于光發生散射而形成了不同的景觀。拉曼光譜是一種散射光譜。在實驗室中,我們通過一個很簡單的實驗就能觀察到拉曼效應。在一暗室內,以一束綠光照射透明液體,例如戊烷,綠光看起來就像懸浮在液體上。若通過對綠光或藍
簡介激光顯微共焦拉曼光譜儀的拉曼基本原理
當光打到樣品上時,樣品分子會使入射光發生散射,若部分散射光的頻率發生改變,則散射光與入射光之間的頻率差稱為拉曼位移。拉曼光譜儀主要就是通過拉曼位移來確定物質的分子結構,針對固體、液體、氣體、有機物、高分子等樣品均可以進行定性定量分析。因此,與紅外吸收光譜類似,對拉曼光譜的研究,也可以得到有關分子
激光共聚焦拉曼光譜儀簡介
原理:當光打到樣品上時候,樣品分子會使入射光發生散射。大部分散射的光頻率沒變,我們這種散射稱為瑞利散射,部分散射光的頻率變了,稱為拉曼散射。散射光與入射光之間的頻率差稱為拉曼位移。拉曼光譜儀主要就是通過拉曼位移來確定物質的分子結構。 適合分析材料:固體、液體、氣體、有機物、高分子等 應用領域
簡介激光顯微共焦拉曼光譜儀的濾光器
激光波長的散射光(瑞利光)要比拉曼信號強幾個數量級,必須在進入檢測器前濾除,另外,為防止樣品不被外輻射源(例如:房間的燈光,激光等離子體)照射,需要設置適宜的濾波器或者物理屏障。安置濾光部件的主要目的是為了抑制雜散光以提高拉曼散射的信噪比。在樣品前面,典型的濾光部件是前置單色器或干涉濾光片,它們
激光顯微共聚焦拉曼光譜儀概述
激光顯微共聚焦拉曼光譜儀是一種用于化學工程、材料科學、機械工程、生物學領域的分析儀器,于2013年7月12日啟用。 技術指標 測試范圍:100-4000 cm-1 2、激光波長:532nm,633nm 3、光譜分辨率:2cm-1。 主要功能 利用光照射到物質上的拉曼效應,可以得到有關分子
激光顯微共焦拉曼光譜儀的發展
1928年,印度物理學家C.V. Raman在研究CCl4光譜時發現,當光與分子相互作用后,一部分光的波長會發生改變(顏色發生變化),通過對于這些顏色發生變化的散射光的研究,可以得到分子結構的信息,因此這種效應命名為Raman效應。 以拉曼效應為基礎發展起來的光譜學稱為拉曼光譜學,屬于分子振動
激光共焦拉曼光譜的原理
激光共焦拉曼光譜是用來分析物質組分﹑結構等的一種有效光譜分析手段,其原理是入射激光會引起分子(或晶格)產生振動而損失(或獲得)部分能量,致使散射光頻率發生變化對散射光的分析,即拉曼光譜分析,可以探知分子的組分,結構及相對含量等,因此被廣泛成為分子探針技術。該儀器是在1960后產生的,他的光源采用激光
激光共焦拉曼光譜的原理
激光共焦拉曼光譜是用來分析物質組分﹑結構等的一種有效光譜分析手段,其原理是入射激光會引起分子(或晶格)產生振動而損失(或獲得)部分能量,致使散射光頻率發生變化對散射光的分析,即拉曼光譜分析,可以探知分子的組分,結構及相對含量等,因此被廣泛成為分子探針技術。該儀器是在1960后產生的,他的光源采用激光
激光顯微共焦拉曼光譜儀的樣品裝置
樣品裝置包含在外光路系統中。樣品架的設計要保證使照明最有效和雜散光最少,尤其要避免入射激光進入光譜儀的入射狹縫。為此,對于透明樣品,最佳的樣品布置方案是使樣品被照明部分呈光譜儀入射狹縫形狀的長圓柱體,并使收集光方向垂直于入射光的傳播方向。 拉曼樣品主要有:透明液體、透明固體、不透明固體、加溫樣
共焦顯微拉曼光譜儀
1.?共焦拉曼指的是空間濾波的能力和控制被分析樣品的體積的能力。通常主要是利用顯微鏡系統來實現的。?僅僅是增加一個顯微鏡到拉曼光譜儀上不會起到控制被測樣品體積的作用的—為達到這個目的需要一個空間濾波器。2.(1)、顯微是利用了顯微鏡,可以觀測并測量微量樣品,zui小1微米左右(2)、共焦是樣品在顯微
簡介激光顯微共焦拉曼光譜儀的探測、放大和記錄系統
探測器又稱檢測器,在拉曼光譜儀中,被用于探測儀器收集到的拉曼散射光或經過變換的信號。傳統的拉曼光譜儀一般采用光電倍增管或電子計數器作為檢測器,用于對分光后的光譜逐點(即逐頻率)掃描以得到完整的拉曼光譜。常用的探測器有硅CCD探測器、紫外強化CCD探測器、近紅外(NIR)單元探測器和光電倍增管。C
激光顯微共焦拉曼光譜儀的激光器相關介紹
激光器主要提供激發光源。激光器用作拉曼光譜的激發光源對拉曼光譜術的快速發展起到了至關重要的作用。由于拉曼散射很弱,要求的光源強度大,而激光器提供的激發光源具有極高的亮度、方向性強、譜線寬度十分狹小以及發散度極小,可傳輸很長的距離而保持高亮度。因此,一般用激光器提供激發光源。 激光器種類很多,常
顯微激光共焦拉曼光譜儀的結構和應用
通常來說顯微激光共焦拉曼光譜儀能夠在紫外到近紅外的光譜范圍內測量物質的拉曼光譜,具有超高的靈敏度,分辨率和重復性,能保證高空間分辨率,是一種非破壞性的微區分析手段,拉曼光譜可以單獨和其他技術結合起來使用,方便地確定離子、分子種類的物質結構。 激光共焦拉曼光譜是用來分析物質組分結構等的一種有效光
從微區拉曼到現代的激光共聚焦顯微拉曼
拉曼微區探針(微區拉曼)是把顯微鏡和拉曼光譜聯系起來,測得的拉曼光譜具有較高的精確性,可以用來進行表面光譜學研究,發現與組分化學性質有關的表面均一性。 拉曼微區探針的概念最早是由Tomas Hirshfled在1969年提出的。圖1給出了第一臺成功的拉曼顯微鏡示意圖。它把常規顯微鏡和配有高靈敏
激光共焦顯微拉曼光譜儀相比傳統有什么優勢
激光共焦顯微拉曼光譜儀比傳統的色散型拉曼光譜儀在工作效率,運行速度、分辨率、靈敏度和微量樣品分析諸方面都有了很大的提高。它采用先進的光學系統設計及全息濾光片,CCD探測器等先進技術,使儀器的靈敏度及數據采集速度大大提高,總效率(信號/功率!時間)比傳統儀器提高了近3個數量級。利用共焦顯微拉曼光譜儀作
激光顯微共焦拉曼光譜儀的顯微鏡系統相關介紹
裝有顯微鏡的拉曼光譜儀能夠做到微區分析,與之相應的技術常稱為顯微拉曼光譜術(Micro-Raman Spectroscopy)。借助顯微鏡系統,儀器既能顯示材料很小區域的形貌(對透明材料也能觀察到內部結構),又能收集到該區域的拉曼光譜散射光。橫向分辨率可達到微米級別。共聚焦顯微鏡的出現,優化了軸
激光共焦拉曼光譜儀的作用
激光共焦拉曼光譜儀是用來分析物質組分﹑結構等的一種有效光譜分析手段,其原理是入射激光會引起分子(或晶格)產生振動而損失(或獲得)部分能量,致使散射光頻率發生變化對散射光的分析,即拉曼光譜分析,可以探知分子的組分,結構及相對含量等。
共聚焦顯微拉曼光譜儀概述
共聚焦顯微拉曼光譜儀是一種用于地球科學領域的分析儀器,于2011年12月08日啟用。 1、技術指標 激光波長532和780nm,分辨率為1um。 2、主要功能 分析鑒定巖石礦物。激光波長532和780nm,分辨率為1um。拉曼分析優點:分析簡單,不損壞樣品;微米級制圖和數據分析;深度剖面
450萬!激光顯微共聚焦拉曼光譜儀同濟大學
同濟大學企業信息2023年2月政府采購意向-激光顯微共聚焦拉曼光譜儀?詳細情況2023年02月07日 11:05激光顯微共聚焦拉曼光譜儀項目所在采購意向:同濟大學企業信息2023年2月政府采購意向采購單位:同濟大學企業信息采購項目名稱:激光顯微共聚焦拉曼光譜儀預算金額:450.000000萬元(人民
顯微共焦拉曼光譜儀的功能
顯微共焦拉曼光譜儀是一種用于化學領域的分析儀器,于2005年09月01日啟用。 1技術指標 激光器波長:514nm,325nm,785nm拉曼位移范圍:100~4000cm-1顯微尺寸范圍:≤1μm光譜范圍:300~1000nm光譜分辨率:≤1cm-1帶有微區裝置,具有微探針功能,可以對微小
激光顯微拉曼光譜儀采用的是什么技術
激光顯微拉曼光譜儀采用了兩個關鍵技術:一是將顯微技術引入了激光拉曼光譜儀,從而實現了對固體、液體樣品的微區分析,二是采用非對稱式C-T結構水平成像系統進行激光顯微拉曼光譜儀的設計,大大提高了儀器分辨率。
激光顯微共聚焦拉曼光譜儀搭建完成并投入使用
2016年5月底,深海極端環境模擬研究實驗室成功搭建了激光顯微共聚焦拉曼光譜儀LabRamanHR Evolution,該設備是完全集成型共焦顯微拉曼系統,可實現全自動,配備單級光譜儀以達到最好的光通量,包括一個800mm焦長的Czerny-Turner型光譜儀,是目前市場上性能最高的全自動單級
BioRam?-激光共聚焦拉曼光鑷顯微鏡
激光共聚焦拉曼光鑷顯微鏡(BioRam?)基于拉曼散射和光阱捕獲原理,創新地將共聚焦拉曼顯微技術與光鑷技術集成于一體,采用同一波長(785nm)的激光用于細胞的光阱捕獲和拉曼信號激發,即可捕獲細胞(即使是溶液中的懸浮細胞)的拉曼信號,又可對單細胞進行移動,實現細胞篩選。不同于常用的細胞分析方法,Bi
共焦顯微拉曼光譜儀與拉曼光譜儀有什么區別
顯微拉曼光譜儀就是把 拉曼光譜儀+標準的光學顯微鏡 耦合在一起。激發激光束通過顯微鏡聚焦為一個微小光斑,這就是顯微的意思。這一光斑所在范圍內的拉曼信號通過顯微鏡回到光譜儀,然后得到光譜信息。但是僅僅給拉曼光譜儀添加顯微鏡并不能控制采集特定體積內樣品的拉曼信號——要實現這個目標必須增加空間濾波器。共焦
激光拉曼光譜定義
拉曼光譜法是研究化合物分子受光照射后所產生的散射,散射光與入射光能級差和化合物振動頻率、轉動頻率的關系的分析方法。 與紅外光譜類似,拉曼光譜是一種振動光譜技術。所不同的是,前者與分子振動時偶極矩變化相關,而拉曼效應則是分子極化率改變的結果,被測量的是非彈性的散射輻。定義:拉曼光譜法是研究化合物分子受
激光拉曼光譜原理
拉曼光譜法是研究化合物分子受光照射后所產生的散射,散射光與入射光能級差和化合物振動頻率、轉動頻率的關系的分析方法。 與紅外光譜類似,拉曼光譜是一種振動光譜技術。所不同的是,前者與分子振動時偶極矩變化相關,而拉曼效應則是分子極化率改變的結果,被測量的是非彈性的散射輻。 激光拉曼光譜原理:
激光顯微共焦拉曼光譜儀的外光路系統相關介紹
外光路系統是指在激光器之后、單色儀之前的一套光學系統(包括樣品池)。它的作用是為了有效地利用光源強度、分離出所需要的激光波長、減少光化學反應和減少雜散光、以及最大限度地收集拉曼散射光,還要適合于不同狀態的試樣在各種不同條件下(如高、低溫)的測試。純化后的激光經反射鏡改變光路再由物鏡準確地聚焦在樣