蘇州納米所硫化鋰電池原位電鏡表征等研究獲進展
隨著社會和科技的發展,人類對電化學儲能技術的需求日益增加,新興儲能系統——鋰硫電池具有理論容量高、成本低、環境友好等優點,備受國內外研究者的關注。而研發高容量鋰硫電池正極材料,對推動新能源動力汽車、便攜式電子設備等領域的發展至關重要。 硫化鋰(Li2S)材料理論容量高達1166 mA h g-1,是其它過渡金屬氧化物和磷酸鹽的數倍;其首次脫鋰充電過程中所發生的體積收縮能給后續的嵌鋰放電反應提供空間,保護了電極結構不受破壞;其可與非鋰金屬負極材料(諸如硅、錫等)組裝電池,有效避免鋰枝晶形成等問題所帶來的安全隱患,是極具發展潛力的鋰硫電池正極材料。然而,該材料電子/離子導電率低,反應中間產物多硫化物在電解液中的溶解引發穿梭效應等問題,限制了其在鋰硫電池中的實際應用。 近日,中國科學院蘇州納米技術與納米仿生研究所張躍鋼課題組自主研發設計了原位掃描/透射電鏡電化學芯片,實現了其對硫化鋰電極充電過程的實時觀測;在充分理解Li2S充......閱讀全文
鋰離子電池正極材料有哪些?鋰離子電池正極材料介紹
鋰離子電池由正極、負極、電解質、電解質鹽、膠粘劑、隔膜、正極引線、負極引線、中心端子、絕緣材料、安全閥、正溫度系數端子(PTC端子)、負極集流體、正極集流體、導電劑、電池殼等部件組成。鋰離子電池的正極材料是含鋰的過渡金屬氧化物、磷化物如LiCoO2、LiFePO4等,導電聚合物如聚乙炔、聚苯、聚吡咯
鋰離子電池負極材料有哪些?鋰離子電池負極材料介紹
鋰離子電池的負極是由負極活性物質碳材料或非碳材料、粘合劑和添加劑混合制成糊狀膠合劑均勻涂抹在銅箔兩側,經干燥、滾壓而成。負極材料是鋰離子電池儲存鋰的主體,使鋰離子在充放電過程中嵌入與脫出。從技術角度來看,未來鋰離子電池負極材料將會呈現出多樣性的特點。隨著技術的進步,目前的鋰離子電池負極材料已經從單一
硫化儀中的硫化
硫化過程是橡膠大分子鍵發生化學交聯反應的過程,硫化也就是在加熱條件下,膠料中的生膠與硫化劑發生化學反應,使膠料由線性結構的大分子交聯硫化儀(又稱)橡膠硫化測試儀,無轉子硫化儀,橡膠硫化儀是橡膠加工行業控制膠料質量,快速檢驗及橡膠基礎研究應用最廣泛的儀器,為橡膠最優化配方組合提供了精確的數據,可精確測
鋰電池的主要材料
碳負極材料實際用于鋰離子電池的負極材料基本上都是碳素材料,如人工石墨、天然石墨、中間相碳微球、石油焦、碳纖維、熱解樹脂碳等。錫基負極材料錫基負極材料可分為錫的氧化物和錫基復合氧化物兩種。氧化物是指各種價態金屬錫的氧化物。沒有商業化產品。氮化物沒有商業化產品。合金類包括錫基合金、硅基合金、鍺基合金、鋁
鋰電池正極材料介紹
正極材料 在正極材料當中,較常用的材料有鈷酸鋰,錳酸鋰,磷酸鐵鋰和三元材料鎳鈷錳的聚合物正極材料占有較大比例正負極材料的質量比為31~41,因為正極材料的性能直接影響著鋰離子電池的性能,其成本也直。
4680電池負極材料的特性
4680電池在負極材料上與主流電池也有所不同,主流以石墨為主,4680電池使用的是硅基負極,該材料特性是比容量高,但存在硅易體積膨脹、導電性差、首次充放電損耗大等問題。為了在能量密度和穩定性之間找到平衡點,目前的做法是將硅和石墨混合使用。
概述鋰離子電池材料
鋰離子電池由以下部件組成:正極、負極、電解質、電解質鹽、膠粘劑、隔膜、正極引線、負極引線、中心端子、絕緣材料、安全閥、正溫度系數端子(PTC端子)、負極集流體、正極集流體、導電劑、電池殼。 正極材料是含鋰的過渡金屬氧化物、磷化物如LiCoO2、LiFePO4等,導電聚合物如聚乙炔、聚苯、聚吡咯
鋰電池正極材料詳解
正極材料是鋰電池的核心材料,是決定電池性能的最關鍵因素。正極材料對電池產品最終的能量密度、電壓、使用壽命以及安全性等有著直接影響,也是鋰電池中成本最高的部分。鋰電池往往用正極材料命名,如三元鋰電池,就是使用三元材料做正極的鋰電池。不同正極材料差距明顯,適用領域也不一樣。常見的正極材料可以分為鈷酸鋰(
日本研發新性能電池材料
日本積水化學工業公司近日開發出了用于純電動汽車(EV)等的“鋰離子蓄電池”的新材料。使用新材料的蓄電池可以存儲以往3倍的電量,使純電動車有望實現1次充電行駛600公里左右,達到汽油車的水平。同時,積水化學還開發出了可簡化制造工序的材料。力爭將電池生產成本降低60%以上。 《日本經濟新聞》12月
電池材料隔膜對鋰電池質量的影響
通常情況下進口的電池隔膜質量相對來說要比國內生產的電池隔膜要好些,電池隔膜質量對鋰電池電性能指標和使用質量方面都有相對比較至關重要的干擾。鋰電池報價差異會因為電池隔膜使用的質量有關,這個也需要看自己研發使用的產品對鋰電池性能指標的規范了。
關于鋰電池負極材料納米材料的介紹
納米材料是指在三維空間中至少有一維處于納米尺寸(1-100 nm)或由它們作為基本單元構成的材料,這大約相當于10~1000個原子緊密排列在一起的尺度。 "納米復合聚氨酯合成革材料的功能化"和"納米材料在真空絕熱板材中的應用"2項合作項目取得較大進展。具有負離子釋放功能且釋放量可達2000以上
關于鋰電池負極材料納米材料的簡介
納米顆粒材料又稱為超微顆粒材料,由納米粒子(nano particle)組成。納米粒子也叫超微顆粒,一般是指尺寸在1~100nm間的粒子,是處在原子簇和宏觀物體交界的過渡區域,從通常的關于微觀和宏觀的觀點看,這樣的系統既非典型的微觀系統亦非典型的宏觀系統,是一種典型的介觀系統,它具有表面效應、小
新型碳材料可用于電池材料及氣體吸收
新日鐵住金化學2013年6月20日發布消息稱,通過與日本分子科學研究所的名譽教授西信之的共同研究,開發出了多孔質碳材料“ESCARBON”,并已開始供貨樣品。該材料以乙炔碳碳三鍵(C≡C)與金屬原子結合形成的金屬乙炔化合物為前驅體,進行納米級別結構控制,獲得了被稱為多孔碳納米樹狀體(MCND)的
?-鋰離子電池材料有哪些?鋰離子電池的組成材料介紹
鋰離子電池由以下部件組成:正極、負極、電解質、電解質鹽、膠粘劑、隔膜、正極引線、負極引線、中心端子、絕緣材料、安全閥、正溫度系數端子(PTC端子)、負極集流體、正極集流體、導電劑、電池殼。1、正極材料正極材料是含鋰的過渡金屬氧化物、磷化物如LiCoO2、LiFePO4等,導電聚合物如聚乙炔、聚苯、聚
鋰離子電池材料有哪些?鋰離子電池的組成材料介紹
鋰離子電池由以下部件組成:正極、負極、電解質、電解質鹽、膠粘劑、隔膜、正極引線、負極引線、中心端子、絕緣材料、安全閥、正溫度系數端子(PTC端子)、負極集流體、正極集流體、導電劑、電池殼。1、正極材料正極材料是含鋰的過渡金屬氧化物、磷化物如LiCoO2、LiFePO4等,導電聚合物如聚乙炔、聚苯、聚
鋰離子電池材料有哪些?鋰離子電池的組成材料介紹
鋰離子電池由以下部件組成:正極、負極、電解質、電解質鹽、膠粘劑、隔膜、正極引線、負極引線、中心端子、絕緣材料、安全閥、正溫度系數端子(PTC端子)、負極集流體、正極集流體、導電劑、電池殼。1、正極材料正極材料是含鋰的過渡金屬氧化物、磷化物如LiCoO2、LiFePO4等,導電聚合物如聚乙炔、聚苯、聚
美研發出銅鋅錫硫化合物薄膜電池
據美國物理學家組織網12月8日(北京時間)報道,美國普渡大學科學家最新報告稱,他們設計出了由低成本、來源豐富的材料制成的太陽能電池,這種電池易于大規模生產且性能非常穩定,其全域轉化效率高達7.2%,高于目前的同類太陽能電池,其轉化效率在未來還有很大的提升空間。 以郭啟杰(音
鋰電池的正極活性物質硫化銅的簡介
硫化銅是一種無機化合物,化學式為CuS或(Cu+)3(S2-)(S2-),故實際上是亞銅的硫化物和超硫化物的混鹽, [6] 呈黑褐色,極難溶,是最難溶的物質之一(僅次于硫化銀、硫化汞、硫化鈀和硫化亞鉑等),因為它的難溶性使得一些看似不可以發生的反應能夠發生。
鋰電池的正極活性物質硫化物的簡介
無機化學中,硫化物(sulfide)指電正性較強的金屬或非金屬與硫形成的一類化合物。大多數金屬硫化物都可看作氫硫酸的鹽。由于氫硫酸是二元弱酸,因此硫化物可分為酸式鹽(HS,氫硫化物)、正鹽(S)和多硫化物(Sn)三類。 -2價硫的化合物,金屬硫化物可以看成氫硫酸的鹽。金屬與硫直接反應或者將硫化
固態鋰電池電解質的硫化物體系
硫化物體系的固體電解質可認為是由硫化鋰及錯、磷、硅、鈦、鋁、錫等元素的硫化物組成的多元復合材料,材料物相同時涵蓋晶態和非晶態。硫的離子半徑大,使得鋰離子傳輸通道更大;電負性也適宜,所以硫化物固體電解質在所有固體電解質中鋰離子電導最好,其中Li-Ge-P-S體系在室溫下的鋰離子電導可以和電解液直接
關于鋰電池二硫化鉬的發展的介紹
盡管石墨烯有著許多令人眼花繚亂的優點,但它也有缺點,尤其是不能充當半導體——這是微電子的基石。化學家和材料學家正在努力越過石墨烯,尋找其他的材料。他們正在合成其他兩種兼具柔韌性和透明度,而且擁有石墨烯無法企及的電子特性的二維片狀材料,二硫化鉬就是其中一種。 二硫化鉬于2008年合成,是叫作過渡
硫化儀測定未硫化膠料硫化特性的原理
將未硫化膠料試樣放入一個完全密封或幾乎完全密封的模腔內,并使之保持在設定的試驗溫度下。模腔有上、下兩個部分,其中一部分以微小的擺角振蕩。振蕩使試樣產生剪切應變,測定試樣對模腔的反作用轉矩(力)。此轉矩(力)取決于膠料在硫化過程中產生的、隨硫化時間長短而連續變化的剪切模量。從膠料入模開始,硫化儀便
簡述鋰電材料二硫化鉬的催化作用
MoS2用作石化,例如加氫脫硫中脫硫的輔助催化劑。MoS2催化劑的有效性通過添加少量的鈷或者鎳得到增強。這些硫化物的緊密混合物是負載在氧化鋁上。這種催化劑是通過用下列物質處理鉬酸鹽/鈷或鎳浸漬氧化鋁原位生成的H2S或者等效的試劑。催化作用不發生在微晶的規則片狀區域,而是發生在這些平面的邊緣。
概述二硫化鐵在光電材料中的應用
二硫化亞鐵是一種在自然界儲量非常豐富的無毒環境友好型間接帶隙半導體材料,帶隙寬度為0.95 eV。非常接近理想太陽能電池材料所需要的1.1 eV的要求,同時具有優良的光吸收能力,吸收系數達到105cm-1。因此二硫化亞鐵材料是一種非常具有潛力的新型光伏材料。2009年相關文獻報道中,其在23種材
鋰電材料納米氧化鋅對膠料硫化特性的影響
納米氧化鋅對膠料硫化特性的影響較大,由于大比表面高活性,使膠料交聯密度提高,這表現在硫化曲線的大扭距MH提高,也表現在300%定伸強度的提高上。另外,硫化曲線有整體隨時間后移的傾向,無論ts2、t90都較普通氧化鋅延遲。這種延遲作用隨配方體系不同程度也不同,具體的機理尚待探討。
硫化銀半導體材料的性質與穩定性
如果遵照規格使用和儲存則不會分解:避免接觸氧化物,酸。β-Ag2S為灰黑色正交晶體,在175℃轉化為α-Ag2S;α-Ag2S為黑色立方晶體。硫化銀極難溶于水;幾乎不溶于稀的非氧化性酸;不溶于氨水和氨鹽溶液;但溶于堿金屬氰化物溶液和硝酸;濃H2SO4能將Ag2S轉化為硫酸銀和硫。硫化銀在室溫和空氣中
半導體材料硫化鉑光電特性的相關研究獲進展
記者6月20日從云南大學材料與能源學院獲悉,該學院楊鵬、萬艷芬團隊經過持續研發,解決了類石墨烯材料大面積均勻少層硫化鉑的合成及其結構和物理性能的一系列問題,為更豐富的應用場景器件開發提供支持,同時給行將終結的摩爾定律注入新的希望,提供極具潛力的半導體材料。 “微電子技術歷經半個多世紀發展,給人
鋰電池材料構成主要有哪些?鋰電池主要材料簡單介紹
鋰電池是一類由鋰金屬或鋰合金為正/負極材料、使用非水電解質溶液的電池。由于鋰金屬的化學特性非常活潑,使得鋰金屬的加工、保存、使用,對環境要求非常高。隨著科學技術的發展,鋰電池已經成為了主流。一、鋰電池材料構成主要有哪些碳負極材料:實際用于鋰離子電池的負極材料基本上都是碳素材料,如人工石墨、天然石墨、
日本電池新技術:細菌用作鋰電池負極材料
近日,日本國立岡山大學、東京工業大學和京都大學的科研小組對外展示了地下水中的細菌產生的氧化鐵納米顆粒,可用作鋰離子電池的陽極材料。 這些納米顆粒通過細菌聚成納米管,相關科研論文發表在美國化學學會的《應用材料與界面》上。 J. Takada,、H. Hashimoto及其他科研人員發現,赭色纖
鋰電池負極材料納米材料的制備方法介紹
(1)惰性氣體下蒸發凝聚法。通常由具有清潔表面的、粒度為1-100nm的微粒經高壓成形而成,納米陶瓷還需要燒結。國外用上述惰性氣體蒸發和真空原位加壓方法已研制成功多種納米固體材料,包括金屬和合金,陶瓷、離子晶體、非晶態和半導體等納米固體材料。我國也成功的利用此方法制成金屬、半導體、陶瓷等納米材料