1983年,WALZ公司首席科學家,德國烏茲堡大學教授Ulrich Schreiber博士利用調制技術和飽和脈沖技術,設計制造了全世界第一臺脈沖振幅調制(Pulse-Amplitude-Modulation,PAM)熒光儀——PAM-101/102/103。所謂調制技術,就是說用于激發熒光的測量光具有一定的調制(開/關)頻率,檢測器只記錄與測量光同頻的熒光,因此調制熒光儀允許測量所有生理狀態下的熒光,包括背景光很強時。正是由于調制技術的出現,才使得葉綠素熒光由傳統的“黑匣子”(避免環境光)測量走向了野外環境光下測量,由生理學走向了生態學。 經過充分暗適應后,所有電子門均處于開放態,打開測量光得到Fo,此時給出一個飽和脈沖,所有的電子門就都將該用于光合作用的能量轉化為了熒光和熱,此時得到的葉綠素熒光為Fm。根據Fm和Fo可以計算出PS II的最大量子產量Fv/Fm=(Fm-Fo)/Fm,它反映了植物的潛在最大光合能力。......閱讀全文
1983年,WALZ公司首席科學家,德國烏茲堡大學教授Ulrich Schreiber博士利用調制技術和飽和脈沖技術,設計制造了全世界第一臺脈沖振幅調制(Pulse-Amplitude-Modulation,PAM)熒光儀——PAM-101/102/103。所謂調制技術,就是說用于激發熒光的測
調制葉綠素熒光,全稱脈沖振幅調制(Pulse-Amplitude-Modulation,PAM)葉綠素熒光,國內一般簡稱調制葉綠素熒光,測量調制葉綠素熒光的儀器叫調制熒光儀,或叫PAM。 調制葉綠素熒光(PAM)是研究光合作用的強大工具,與光合放氧、氣體交換并稱為光合作用測量的三大技術。由于其
所謂飽和脈沖技術,就是打開一個持續時間很短(一般小于1 s)的強光關閉所有的電子門(光合作用被暫時抑制),從而使葉綠素熒光達到最大。飽和脈沖(Saturation Pulse, SP)可被看作是光化光的一個特例。光化光越強,PS II釋放的電子越多,PQ處累積的電子越多,也就是說關閉態的電子門
PAM-101/102/103 最經典的型號,雖已停產,但在國際最著名的光合作用實驗室,仍是主打機型,原因很簡單,它老不壞啊,呵呵 PAM-2000/PAM-2100 最暢銷的便攜式機型,應用非常廣泛 MINI-PAM 比PAM-2100便宜,功能同樣強大
在光照下光合作用進行時,只有部分電子門處于關閉態,實時熒光F比Fm要低,也就是說發生了熒光淬滅(quenching)。植物吸收的光能只有3條去路:光合作用、葉綠素熒光和熱。根據能量守恒:1=光合作用+葉綠素熒光+熱。可以得出:葉綠素熒光=1-光合作用-熱。也就是說,葉綠素熒光產量的下降(淬滅)
內置葉綠素熒光誘導測量、PAM(脈沖調制)測量、OJIP快速熒光動力學測量、QA–再氧化動力學、S狀態轉換、葉綠素熒光淬滅等測量程序,是*的功能較為全面的葉綠素熒光儀 雙調制技術,可雙色調制測量光,具備調制光化學光和持續光化學光,可進行STF(單周轉光閃)、TTF(雙周轉光閃)和MTF(
實驗程序:葉綠素熒光誘導測量;PAM(脈沖調制)測量;OJIP快速熒光動力學測量;QA–再氧化動力學;S狀態轉換;快速葉綠素熒光誘導 熒光參數: PAM熒光淬滅動力學測量:測量熒光淬滅動力學曲線,可計算F0,Fm,Fv,F0’,Fm’,Fv’,QY(II),NPQ,ΦPSII,Fv
FL3500雙調制葉綠素熒光儀?(新升級型號為FL6000) FL3500雙調制葉綠素熒光儀是專門用于對藍綠藻或綠藻等微藻,葉綠體或類囊體懸浮物,乃至葉片進行光合作用研究的強大科研工具。儀器具備雙通道測量控制,可控制測量樣品的溫度,并配備單翻轉光(STF),內置多種可用戶自行修改的測量程序,
1960 年,Kautsky 及其助手第一次發現葉綠素熒光產量的變化。他們發現,將植物從暗適應狀態轉入光下的時候,葉綠素熒光產量在1s之內迅速上升,在這個階段,PSII 反應中心被認為是關閉的,光化學效率降低,葉綠素熒光產量升高。在接下來的幾分鐘內,熒光產量逐漸下降,這種現象稱為葉綠素
葉綠素熒光,作為光合作用研究的探針,得到了廣泛的研究和應用。葉綠素熒光不僅能反映光能吸收、激發能傳遞和光化學反應等光合作用的原初反應過程,而且與電子傳遞、質子梯度的建立及ATP合成和CO2固定等過程有關。幾乎所有光合作用過程的變化均可通過葉綠素熒光反映出來,而熒光測定技術不需破碎細胞,不傷害生