<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2018-05-23 15:44 原文鏈接: 中國科大太赫茲波段主動調控材料和器件研究獲進展

    我校陸亞林教授量子功能材料和先進光子技術研究團隊在太赫茲主動調控器件研究方面取得系列進展。該團隊研究了太赫茲波與超構材料、氧化物超晶格薄膜相互作用機制,并成功制備了超快的太赫茲調制器,率先實現了皮秒級的高調制深度的太赫茲超快開關;同時制備了多功能的太赫茲器件,在單一器件中實現電開關、光存儲和超快調制多種功能。相關研究成果近期相繼發表在國際權威學術期刊《先進光學材料》[Adv. Optical Mater.]和《光學快訊》[Opt. Express.]上。

     

    太赫茲波具有獨特的時域脈沖、低能、譜指紋、寬帶等特性,它在物理化學、材料科學、生物醫學、環境科學、安全檢查、衛星通訊等領域有著廣闊的應用前景。其中,影響太赫茲技術發展和應用的關鍵因素之一是難以獲得主動太赫茲調控元器件。超構材料,一種由金屬或介質材料的亞波長微結構陣列組成的人工材料,其奇異的電磁響應特性為太赫茲調控器件提供了絕佳的解決方案。遺憾的是,以往基于超構材料的太赫茲元器件均由金屬材料構成,加工尺寸固定后,器件的功能在實際應用中便難以主動改變。因此,發展主動調控的太赫茲元器件有著重要的研究意義。

     

    通常主動調控是對太赫茲波偏振、振幅、相位等進行調控,調控速度是另外一個指標。一些實際應用也迫切需求對太赫茲波進行超快調控。陸亞林教授團隊設計并制作了基于硅介質的超快調控超表面。通過對硅薄膜進行離子注入和快速熱處理工藝,大大減小了硅的載流子壽命并提高了自由載流子濃度。然后通過光刻、刻蝕工藝將硅薄膜加工為能在太赫茲波段共振的圓盤陣列結構的超表面。利用紅外飛秒脈沖的激發,率先實現了皮秒級的高調制深度的太赫茲超快開關(開20ps,關300ps),并基于半導體載流子動力學建立理論模型對其進行了合理的解釋。相關研究成果近日在《先進光學材料》期刊上線[Adv. Optical Mater. 2018, DOI:10.1002/adom.201800143]。

     

     

    硅介質超表面器件示意圖以及其對太赫茲波超快調控的實驗結果

     

    另外,當前研究的太赫茲主動調控器件功能比較單一,即只能在單一外場下實現單一的功能。但單一功能難以適應當今技術發展的要求。因此,在單一器件上,實現多物理場的調控,并實現對太赫茲波的多功能調控,是當前太赫茲技術的發展前沿之一,也是實際應用的現實需求。有鑒于此,該團隊基于VO2的絕緣-金屬相變,通過將VO2與金屬非對稱開口諧振環結合,設計了一種太赫茲波段的多功能可調諧復合超表面,并利用國家同步輻射實驗室鄒崇文副研究員提供的高質量VO2薄膜,通過刻蝕、光刻等工藝制備了器件。此復合超表面能夠通過加熱和施加電流的方式實現對透射太赫茲波的振幅調控,絕對調制深度高達54%,品質因數高達138%。基于VO2在相變過程中的回滯特性,該復合超表面可以通過電流觸發實現室溫下對太赫茲波的記憶存儲功能。此外,利用超快強脈沖泵浦,此復合超表面還能實現對太赫茲波的超快調控。從而,在單一器件實現了對太赫茲波的多功能調控。相關研究成果近日在《先進光學材料》期刊上線[Adv. Optical Mater. 2018, DOI: 10.1002/adom.201800257]。

     

     

    金屬-VO2復合超表面器件示意圖及其電開關、光存儲功能的實驗結果

     

    此外,很多材料在太赫茲波段的響應仍是未知的,而只有研究清楚了各類材料與太赫茲波相互作用的特性,設計主動太赫茲器件才能有跡可循。該團隊利用自行搭建的兩套太赫茲系統測量并分析了量子功能材料與太赫茲波的相互作用。重點研究了不同周期數的La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜的太赫茲響應,發現了532 nm連續激光的泵浦對此超晶格在太赫茲波段的介電常數具有較大的調控作用,并通過Drude-Lorentz模型的擬合對此現象進行了微觀機理的解釋,這為尋找新的可用于太赫茲主動調控器件的功能材料開辟了新路徑。相關研究成果發表在《光學快訊》[Opt. Express. 26, 7842 (2018)]上。

     

     

    La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜在太赫茲波段的介電常數和激發光功率關系

     

    上述論文的第一作者為合肥微尺度物質科學國家實驗中心博士研究生蔡宏磊,通訊作者為黃秋萍博士、陸亞林教授。該工作得到了科技部、國家自然科學基金委、中科院和教育部等關鍵項目的資助。

     

    附論文鏈接:

    https://doi.org/10.1002/adom.201800143

    https://doi.org/10.1002/adom.201800257

    https://doi.org/10.1364/OE.26.007842

     

    (合肥微尺度物質科學國家研究中心、國家同步輻射實驗室、科研部)


    相關文章

    中國自主研制的太赫茲探測設備在南極成功運行

    13日從中國科學院紫金山天文臺獲悉,在中國第39次南極科學考察期間,由該臺牽頭完成了南極內陸太赫茲天文試觀測和通信收發等實驗。這是中國自主研制的太赫茲探測設備首次在南極內陸極端環境下成功運行。據科研人......

    太赫茲技術助力空間技術仰望“芯”空

      他們,研制了我國第一臺毫米波天文超導接收機;他們,在國際上首次實現高能隙氮化鈮超導隧道結的天文觀測;他們,研制了目前世界上最前沿的超導熱電子混頻器;他們,實現了我國首例千像元太......

    太赫茲超導空間探測技術研究團隊:精“芯”求索射電問天

    太赫茲團隊(左四為李婧)部分成員在高海拔地區工作合影。他們,研制了我國第一臺毫米波天文超導接收機;他們,在國際上首次實現高能隙氮化鈮超導隧道結的天文觀測;他們,研制了目前世界上最前沿的超導熱電子混頻器......

    織物與太赫茲,一次傳統與科技的結合

    人工超構材料是一種由亞波長結構陣列組成的周期性人工電磁材料,由于其高效、靈活的特性迅速成為調控電磁波的優秀媒質。近日,武漢紡織大學教授汪勝祥團隊利用傳統紡織工藝,結合人工微納結構制備出新型光電子設備。......

    91.8分高分通過,太赫茲重大專項完成最終評定

    1月6日,國家重大科學儀器設備開發專項辦組織召開了“太赫茲顯微成像檢測儀(2017YFF0106300)”項目綜合績效評價視頻會議。本項目由上海理工大學光電信息與計算機工程學院彭滟教授擔任首席,由江蘇......

    基于聲子的新型單頻磁控太赫茲源研發成功

    從中國科學院合肥物質科學研究院了解到,該院強磁場科學中心盛志高課題組瞄準太赫茲核心元器件這一前沿研究方向,與該院固體物理研究所、中國科學技術大學組成聯合攻關團隊,研發出一種新型太赫茲源。相關研究成果日......

    新型太赫茲微流器件研發取得進展

    微生物污染已成為國內外突出的食品安全問題,而由此引發的食源性疾病嚴重危害了人類的健康。我國每年的官方通報中,細菌性食物中毒的報告數和波及人數最多。因此,開展食源性致病菌的快速、準確監測具有十分重要的意......

    熒光碳量子點的太赫茲光電特性研究獲新進展

    近日,中國科學院合肥物質科學研究院固體物理研究所研究員徐文課題組與西南大學合作,利用太赫茲時域光譜(THzTDS)技術,探究熒光碳量子點(CQDs)的光電特性,發現在80-280K溫度范圍內,紅光熒光......

    單個生物大分子的太赫茲超分辨光譜成像研究獲進展

    中國科學院重慶綠色智能技術研究院、中國科學院大學重慶學院、中科院上海高等研究院清華大學和上海交通大學共同攻關,在單個生物大分子的太赫茲超分辨光譜成像研究中取得進展。單個生物大分子的太赫茲探測有望揭示傳......

    科學家成功研制出小如米粒便攜式太赫茲激光器

    最近,科學家研制出一種新型米粒大小的便攜式太赫茲激光器,其工作溫度為250K(-23℃),可用于餅干大小的插入式冷卻器。這項研究將推動太赫茲激光器在醫學成像、通信、質量控制、安全和生物化學等諸多領域“......

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频