<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2019-03-25 20:51 原文鏈接: BAL31核酸酶消化法產生雙向缺失突變體實驗

    本方案使用核酸酶 BAL31(從海洋細菌 Alteromonas espejiana BAL31 中純化)在克隆的 DNA 片段中產生單向或雙向缺失。BAL31 是一個復合酶,它以非同步的方式消化雙鏈靶 DNA。因此與諸如外切核酸酶Ⅲ這類的加工酶相比,BAL31 產生的缺失更具有不均一性(請見方案 9)。本實驗來源于分子克隆實驗指南(第三版)下冊,作者:〔美〕J. 薩姆布魯克 D.W. 拉塞爾。


    試劑、試劑盒

    BAL31 緩沖液EGTA乙醇酚氯仿醋酸鈉蔗糖凝膠上樣緩沖液TE噬菌體 T4DNA 聚合酶BAL31 核酸酶大腸桿菌 DNA 聚合酶 IKlenow 片段限制性內切酶瓊脂糖凝膠用于凝膠電泳的 DNA 分子量標準

    儀器、耗材

    計時鐘水浴

    實驗步驟

    材料

    緩沖液和溶液

    貯存液,緩沖液和試劑的成分請參閱附錄 1, 將貯存液稀釋到合適的濃度。

    5XBAL31 緩沖液
    2.5mol/LNaCl
    62.5 mmol/LCaCl2
    62.5 mmol/LMgCl2
    100 mmol/LTris-Cl(pH8.0)
    有 4 種 dNTP 的溶液,每種濃度為 0.5 mmol/L

    EGTA(0.5mol/L,pH8.0)

    乙醇

    酚:氯仿(1:1,V/V)

    醋酸鈉(3mol/L,pH5.2)

    蔗糖凝膠上樣緩沖液

    TE(pH7.6)

    酶和緩沖液

    噬菌體 T4DNA 聚合酶

    BAL31 核酸酶

    大腸桿菌 DNA 聚合酶 IKlenow 片段

    限制性內切酶
    請見步驟 3、23 和 31。

    凝膠

    瓊脂糖凝膠
    請見步驟 3 和 32。

    含 0.5ug/ml 溴化乙錠的瓊脂糖凝膠(0.8%)
    請見步驟 11。

    用 TBE 配制的含 0.5ug/ml 溴化乙錠的瓊脂糖凝膠
    請見歩驟 25。

    制備瓊脂糖凝膠
    請見步驟 27。

    核酸和寡核苷酸

    用于凝膠電泳的 DNA 分子量標準

    專用設備

    計時鐘

    65°C 水浴和適合限制性內切核酸酶消化溫度的水浴

    其他試劑

    本方案步驟 1 需要的試劑列在第 1 章方案 17~19 或第 3 章方案 6 中。
    本方案步驟 2 需要的試劑列在第 1 章方案 9 中。
    本方案步驟 27 需要的試劑列在第 5 章方案 4、5、6 或 7 中。
    本方案步驟 30 需要的試劑列在第 1 聿方案 23~26 或第 3 章方案 6 或 8 中。
    本方案步驟 31 需要的試劑列在第 1 章方案 1 或第 3 章方案 3 中。
    本方案步驟 34 需要的試劑列在第 12 章方案 3、4、5 中。

    方法

    制備用于 BLA31 消化的靶 DNA

    1. 將靶 DNA 片段克隆進合適的質粒或噬菌體 M13 載體。
    如果擬從靶 DNA 的兩個末端同時構建缺失突變體,需要選擇有多克隆位點的適當載體將靶 DNA 從兩個方向克隆進載體。

    2. 用 Qiagen 層析柱(或相當的產品)和乙醇沉淀純化閉合環狀重鉭 DNA。把 DNA 重新溶解在最小體積的 Tris/EDTA 溶液中。
    使用高純度的閉合環狀 DNA 是很重要的,(i) 降低反應中污染的 RNA 和大腸桿菌染色體 DNA 小片段在總末端濃度中的比例;(ii)刪除能夠被 BAL31 降解的帶缺口的環狀 DNA。

    3. 用切割位點位于靶 DNA—端的限制酶完全消化 30ug 閉合環狀 DNA。界定該位點為嵌套缺失起始的共同點。瓊脂糖凝膠電泳驗證限制酶消化完全。

    4. 等體積的酚: 氯仿抽提純化 DNA。在微型離心機上以最大離心速度離心 3 min 分離有機相和水相,將水相轉移到一個新的微量離心管中。

    5. 加入 0.1 倍體積的 3mol/L 醋酸鈉(PH5.2) 和 2 倍體積冰上預冷的乙醇。在 O°C 溫度下放置 10 min, 在微型離心機上以最大轉速 4°C 離心 10 min 收獲 DNA。

    6. 除去上清,用 70% 的乙醇室溫下小心漂洗 DNA 沉淀物。室溫下干燥 DNA 沉淀物,用 TE(pH7.6) 緩沖液溶解 DNA 沉淀物使之達到 lug/ul 的余度。在-20°C 條件下貯存 DNA。

    BAL31 活性分析

    大多數商業化的 BAL31 酶制品含有兩種動力學上截然不同的酶活性形式:快形式和慢形式(請見信息欄關于 BAL31)。慢形式是快形式的蛋白水解降解產物。BAL31 消化 DNA 的速率是所用特定酶制劑中快形式與慢形式比例的函數。目前能夠得到純化的快速酶制劑(Weietal.1983), 但很昂貴,而且在貯存過程中經常衰變成慢形式。為了使 BAL31 保持在快形式狀態,不應將酶冷凍而要貯存于 4°C。
    由于 BAL31 中快、慢形式的比例因制劑而異,因此必須按以下步驟測定用于構建缺失體的特定批次的酶活性。

    7. 在微量離心管中混合:

    線狀 DNA(1ug/ul)                                    4ul
    水                                                               48ul
    5XBAL31 緩沖液                                     13ul
    按的量將以上混合物分配到 7 個微量離心管中。

    8. 用 1XBAL31 緩沖液把 BAL31 進行 7 次 2 倍稀釋,最好按以下方法稀釋,將 7 滴(2ul)1XBAL31 緩沖液點在置于冰床或冰冷的金屬塊上的石蠟膜表面上,用一次性微量移液器吸頭吸取 2ul 待實驗的 BAL31 酶與第一滴 BAL31 緩沖液混合。換一個新的吸頭吸取 2ul 上述 BAL31 和緩沖液的混合物轉移至第二滴 BAL31 緩沖液中,再度混合均勻。如此類推,直到所有的 BAL31 緩沖液均已與酶混合。迅速地從后 6 份混合液中分別取出 1 至 6 個含線狀 DNA 的微量離心管中,第 7 個反應管中不要加酶。
    大多數商業化 BAL31 酶制劑的濃度大約為 1 單位/ul;0.05~0.1 單位的 BAL31 酶足以將 1ug 長度為 2kb 的線狀 DNA 分子消化成長度小于 200bp 的片段。

    9. 將所有微量離心管(包括不加酶的管)在 30°C 孵育 30 min。

    10. 每個反應管中加入 1ul200 mmol/LEGTA(pH8.0), 然后于 65°C 加熱 5 min。
    BAL31 反應需要 Ca2+, 酶活性可以被 EGTA 完全抑制。65°C 加熱 5 min 也可以使該酶滅活。

    11. 以上每份樣品與 3ul 瓊脂糖凝膠上樣緩沖液混合,在含 0.5ug/ml 溴化乙錠 (0.8%) 的瓊脂糖凝膠上電泳,分析 DNA 的大小。

    12. 在紫外燈照射下檢査凝膠,并決定合適的酶稀釋度,即剛好使 DNA 得到適度的消化,以至只檢測到彌散的小片段 DNA(200bp)。該稀釋度將被用于大規模消化反應(步驟 15)。
    另一種檢査 BAL31 消化程度的方法是設 SBAL31 大量消化反應,在不同的時間點上取樣。用限制性內切核酸酶消化毎一份樣品,限制酶應能切割靶片段數次。隨著 BAL31 消化過程的進展,限制酶片段以一定的次序消失。從限制酶片段的大小位置,便能估計出 BAL31 的消化速率。大量消化反應中使用的 BAL31 量應在反應開始后的前 5 min 內足以使靶片段的長度減少 20%。

    用 BAL31 進行大量消化

    13. 混合

    線狀 DNA(1ug/ul)                           20ul
    水                                                      240ul
    5XBAL31 緩沖液                            65ul
    30°C 水浴中孵育以上混合物。

    14.30°C 孵育期間,準備 8 個微量離心管,每管中含有 5ul 200 mmol/LEGTA(pH8.0),將離心管標記為 1.5 min、3 min、4.5 min 等時間段。

    15. 將 36ul 稀釋的 BAL31(請見步驟 12) 加入到步驟 13 反應混合物中,輕敲離心管壁,將內容物快速混合均勻后放回到 30°C 水浴中,開始計時。

    16. 每隔 1.5 min 將 45ul 反應混合物轉移到帶相應標記的微量離心管中,將離心管置于冰上,直到所有樣品收集完畢。

    17.65°C 加熱 5 min 滅活 BAL31 酶。

    18. 每管中加入 5ul 3 ml/L 的醋酸鈉(PH5.2), 再加入 100ul 冰冷的乙醇,振蕩混合溶液,將離心管放置在冰上 20~30 min。

    19. 最大轉速 4°C 離心回收 DNA, 除去上清,用 200ul 冰冷的 70% 的乙醇洗滌沉淀物,再離心 2 min。

    20. 仔細的去除上清,將敞開管蓋的離心管直立放置在室溫,直到所有的乙醇揮發殆盡。將每份沉淀物溶解在 23ulTE(pH7.6) 中。

    分離截短的靶片段

    21. 每份 DNA 制備物中加人:

    0.5 mmol/LdNTP 溶液                                       3ul
    10X 聚合酶緩沖液                                               3ul
    噬菌體 T4DNA 聚合酶(約 5 單位)               1ul

    室溫下反應 15 min, 然后加入 1(約 5 單位)的 Klenow 片段。繼續在室溫下孵育 15 min。
    在修復反應中使用兩種不同的 DNA 聚合酶,可使突變體的回收率增加近三倍。

    22. 用酚: 氯仿抽提純化 DNA, 按步驟 18~20 所描述的過程用乙醇沉淀 DNA。將每份 DNA 溶解在 16ulTE(pH7.6) 中。

    23. 在毎一份 DNA 中加入 2ul 相應的 10x 限制酶緩沖液和 8 單位的可使靶 DNA 和載體分開的限制酶,在適當的溫度下孵育反應 1h。

    24. 在孵育結束時,從每一個消化反應中取出 3ul 轉移至一個新的微量離心管中,剩余的消化反應放置在冰上以備步驟 27 使用。

    25. 每 3ul 上述反應液中加入 1ul 蔗糖凝膠上樣緩沖液混合,將樣品加到含有 0.5ug/ml 溴化乙錠和 0.5XTBE 的瓊脂糖凝膠加樣孔中。凝膠邊上的加樣孔內應加入一個適當大小的分子量標準參照物。
    灌制的瓊脂糖凝膠的濃度應適合分離靶片段和栽體(請見第 5 章導言部分的表 5-2)。

    26. 利用凝膠電泳分離靶片段和載體 DNA, 在紫外光照射下觀察凝膠,并決定哪份樣品已被 BAL31 消化至合適的大小。

    27. 合并含合適大小靶 DNA 的質粒樣品,按第 5 章方案 4~7 描述的方法通過制備凝膠分離并回收靶 DNA 片段。

    28. 根據溴化乙錠產生的熒光強度,估計出所純化的靶 DNA 量。

    克隆缺失的靶片段

    29. 用質粒、噬菌粒或噬菌體 M13 載體(見第 1 或第 3 章)與缺失的粑片段連接。載體應攜帶一個鈍端和一個與步驟 23 使用的內切酶相匹配的末端。
    連接反應的確切成分和體積取決于靶 DNA 的量,如果可能,應使用 50ng 或 100ng 靶 DNA。保證載體 DNA 對靶 DNA 的摩爾比至少為 5(以便最大限度地減少含有一個以上靶 DNA 片段重組子的數量)。為了最大限度地形成重組體,連接反應應在適于鈍端連接的條件下進行,例如在高濃度的噬菌體 T4DNA 連接酶、聚乙二醇和低濃度 ATP 的小反應體積中進行。有關連接條件的詳細情況,請見第 1 章方案 19。

    30. 用小量的或稀釋的連接混合物轉化(質粒或噬菌粒)或轉染(噬菌體 M13 復制型 DNA) 合適的大腸桿菌感受態菌株。第二天隨機挑選 12 個轉化菌落或噬菌體 M13

    噬斑進行少量培養。

    31. 采用第 1 章或第 3 章描述的方法之一從 12 個培養物中純化質粒、噬菌粒或噬菌體 M13 復制形式 DNA。用可從載體中切出靶片段的限制酶消化 DNA。

    32. 通過凝膠電泳和大小合適的 DNA 分子量標準參照物分析從每種 DNA 中切出的靶片段的大小。

    33. 如果結果是滿意的(例如靶片段的大小在希望的范圍內),可大量挑取相互獨立的轉化單菌落或噬斑。按上述方法鑒定插入片段的大小。保留攜帶大小符合的重組子培養物。

    34. 通過 DNA 測序確定每種突變體缺失位點的準確部位(請見第 12 章方案 3、4 或 5)。


    相關文章

    研究揭示S核酸酶相分離促進矮牽牛自交不親和性新機制

    自交不親和性(Self-incompatibility,SI)是被子植物中普遍存在的一種種內生殖障礙。其中,最廣泛存在的SI系統是在車前科、茄科、薔薇科和蕓香科中發現的一個由S-核酸酶(S-RNase......

    Nature:轉座子編碼的核酸酶利用向導RNA促進轉座子自身的傳播

    基因組工程可能是醫學的未來,但它依賴于數十億年前在原始細菌中取得的進化進步,而原始細菌是最初的基因編輯大師。科學家們對這些古老的基因編輯系統進行改造,推動它們完成更加復雜的基因編輯任務。然而,要發現新......

    核酸酶增強貝萊斯芽孢桿菌T23益生作用的機制

    近日,中國農業科學院飼料研究所水產微生物與飼料創新團隊研究顯示,經核酸酶處理后,益生菌 Bacillusvelezensis T23可降低高脂飼料誘導的斑馬魚肝臟脂質代謝紊亂、腸道......

    Nature首次揭示噬菌體保護自身基因組免受CRISPR核酸酶切割

    細菌和感染它們的病毒正在進行一場與生命本身一樣古老的分子軍備競賽。進化為細菌配備了一系列可靶向并破壞病毒DNA的免疫酶,包括CRISPR-Cas系統。但是,殺死細菌的病毒(也稱為噬菌體)已設計出了它們......

    一種與眾不同的CRISPR核酸酶

      CRISPR是一種出色的基因組編輯工具,深受研究人員的歡迎。其中,大家比較熟悉的是來自化膿鏈球菌的Cas9(SpCas9)。不過,這并不是唯一的選擇。一種新型核酸酶Cas13a......

    微生物所等發表植物基因組編輯研究綜述

    序列特異性核酸酶使得基因組編輯成為可能,快速推動了基礎和應用生物學的發展。CRISPR-Cas9系統自出現以來,作為可轉化植物的基因組編輯工具已得到廣泛應用。CRISPR-Cas9對基因組靶位點進行定......

    NgAgo四大新發展顯示信心增強,國際爭奪加劇

    進入2017年,河北科技大學韓春雨教授的NgAgo基因編輯技術出現一系列令人眼花繚亂的新發展,讓這個一度沉寂的話題,再次引起公眾關注。而其中影射的意義,更是值得中國科技界和大眾傳媒的深思。國際ZL申請......

    PNAS:科學家制備雙重核酸酶讓CRISPR技術更上一層樓

    生物通報道:最近,美國西安大略大學的研究人員,就像玩分子樂高游戲一樣,向革命性的新基因編輯工具CRISPR/Cas9添加了一種工程酶。他們的研究發表在12月12日出版的美國國家科學院院刊PNAS,表明......

    遺傳學大牛Nature子刊發布基因組編輯新工具

    生物醫學研究和基因治療需要非常精確的基因組編輯技術。哈佛醫學院的研究人員為此開發了一種新的基因組編輯工具。這個重要成果十一月二日發表在NatureCommunications雜志上,文章通訊作者是著名......

    華人學者NatureMethods發表CRISPR新工具

    基因網絡指導著細胞的正常功能,這個網絡受到干擾就可能引發疾病。動態操縱轉錄組的能力對于研究基因網絡的作用機制非常重要。斯坦福大學的研究人員在CRISPR–dCas9的基礎上實現了可誘導的復雜轉錄調節,......

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频