1 什么是MRSA
金黃色葡萄球菌是臨床上常見的毒性較強的細菌,自從本世紀40年代青霉素問世后,金黃色葡萄球菌引起的感染性疾病受到較大的控制,但隨著青霉素的廣泛使用,有些金黃色葡萄球菌產生青霉素酶,能水解β-內酰胺環,表現為對青霉素的耐藥。因而人們又研究出一種新的能耐青霉素酶的半合成青霉素,即甲氧西林(methicillin)。1959年應用于臨床后曾有效地控制了金黃色葡萄球菌產酶株的感染,可時隔兩年,英國的Jevons[1]就首次發現了耐甲氧西林金黃色葡萄球菌(methicillin resistant Staphylococcus aureus,MRSA),MRSA從發現至今感染幾乎遍及全球,已成為院內感染的重要病原菌之一。因此,開展對MRSA的檢測,對于控制醫院內感染的流行,指導臨床治療有著十分重要的意義。
2 MRSA的特性
2.1 不均一耐藥性[2] MRSA菌落內細菌存在敏感和耐藥兩個亞群,即一株MRSA中只有一小部分細菌約10-4~10-7,對甲氧西林高度耐藥,在50 μg/ml甲氧西林條件下尚能生存,而菌落中大多數細菌對甲氧西林敏感,在使用抗生素后的幾小時內大量敏感菌被殺死,但少數耐藥菌株卻緩慢生長,在數小時反又迅速增殖。
2.2 廣譜耐藥性 MRSA除對甲氧西林耐藥外,對其它所有與甲氧西林相同結構的β-內酰胺類和頭孢類抗生素均耐藥,MRSA還可通過改變抗生素作用靶位,產生修飾酶,降低膜通透性產生大量PABA等不同機制[3],對氨基糖苷類、大環內酯類、四環素類、氟喹喏酮類、磺胺類、利福平均產生不同程度的耐藥,唯對萬古霉素敏感。
2.3 生長特殊性 MRSA生長緩慢,在30°C,培養基pH 7.0及高滲(40 g/L NaCl溶液)條件下生長較快[4]。在30°C時,不均一耐藥株表現為均一耐藥和高度耐藥,在37°C又恢復不均一耐藥。均一耐藥株在>37°C或pH<5.2時,均一耐藥性可被抑制而表現為敏感。增加NaCl濃度,低溫孵育和延長時間,可使不均一耐藥株群體中敏感亞群中的耐藥性得到充分表達,即能耐受較高濃度的甲氧西林,而對其中耐藥亞群無影響[5]。但最近也有報道,高滲下延長培養時間,會影響MRSA的檢出結果,因為在高鹽情況下,培養48 h,對甲氧西林敏感的金黃色葡萄球菌(methicillin sensitive Staphylococcus aureus;MSSA)易產生大量β-內酰胺酶,可緩慢水解甲氧西林,導致細菌生長,而誤認為MSSA。所以一般MRSA在高鹽環境孵育24 h,而耐甲氧西林凝固酶陰性葡萄球菌(MRCNS)由于耐藥亞群菌數少于金葡菌,應孵育48小時觀察結果。
3 MRSA的耐藥機理
3.1 固有耐藥 是由染色體介導的耐藥,其耐藥性的產生與細菌產生一種青霉素結合蛋白(PBP)有關。產生五種PBP(1,2,3,3′和4),它們具有合成細菌細胞壁的功能。它們與β-內酰胺類抗生素有很高的親和力,能共價結合于β-內酰胺類藥物的活動位點上,失去其活性導致細菌死亡,而MRSA產生了一種獨特的PBP,這種分子量增加了78~1000道爾頓的PBP,因其電泳率介于PBP2與PBP3之間,故稱為PBP2a或PBP2′[6]。PBP2a對β-內酰胺類抗生素親和力很低,因而很少或不被β-內酰胺類藥結合。在β-內酰胺類抗生素存在的情況下,細菌仍能生長,表現出耐藥性。PBP2a的產生是受染色體甲氧西林耐藥基因(mec A)來調節的。MRSA與MSSA根本區別在于它們的PBP不同。
3.2 獲得性耐藥 是質粒介導的耐藥。某些菌株通過耐藥因子產生大量β-內酰胺酶,使耐酶青霉素緩慢失活,表現出耐藥性[7],多為臨界耐藥。
4 MRSA的分型
MRSA分型對追蹤傳染源,研究型別與感染種類,耐藥性的關系有重要作用。國外開展較早的噬菌體分型,將待測菌于肉湯中,35°C孵育6 h,涂于分型瓊脂平板上,待干后將23種噬菌體注入瓊脂平板中的小方格內,再置35°C孵育6 h后移至室溫過夜觀察結果。用4組23種噬菌體,將MRSA分為4群,一般以Ⅰ群為最多[8],也有報告以Ⅲ群為多。噬菌體分型結果常不滿意,日本小粟 子證實有29.3%菌株不能分型,且重復性差,不宜用于流行病學調查。質粒圖譜分型較為可靠,可分為18個型,能準確地分析菌株之間的相關性,將流行菌株與非流行菌株加以區別。國內MRSA廣泛存在分子量為1.6 Md、1.8 Md及2.67 Md的質粒,不同地區和不同醫院會有特殊質粒帶。免疫印跡分型法將MRSA分為9個型,以B、C型為最常見,各型含有特征性的分子帶,該法比較穩定。染色體限制性內切酶分析可識別病原體DNA鏈上特異位點及核苷酸序列,能從基因水平顯示病原體特征,MRSA還可用血清學、凝固酶、耐藥譜等方法分型。現在Southern印跡法也逐漸運用于MRSA的分型。
5 MRSA的檢測
由于MRSA的不均一耐藥性,給其檢測帶來一定的困難。MRSA的檢出率受孵育溫度、時間、培養基的pH和NaCl的濃度、菌液的數量等多種因素的影響。因此,目前還沒有一種最佳的檢測方法。
5.1 紙片擴散法(K-B法) 平皿中MH瓊脂厚度為4 mm,菌液調至0.5麥氏濁度,涂沫于上述平板,甲氧西林含量5 μg/片,35°C孵育24 h,抑菌圈≤11 mm為耐藥,≥17 mm為敏感,由于MRSA通常對其它耐酶半合成青霉素也耐藥,因此美國臨床實驗室標準化委員會(NCCLS)推薦用苯唑西林來代替檢測MRSA。苯唑西林在貯存過程中藥效不易降低,且對不均一耐藥性檢測效果更好,所以國內多數實驗室都采用苯唑西林,苯唑西林含量為1 μg/片,抑菌圈≤10 mm為耐藥,≥13 mm為敏感,11~12 mm為中介。質控菌株為金黃色葡萄球菌ATCC 29213(耐藥菌株),金黃色葡萄球菌ATCC 25923(敏感菌株)。紙片擴散法最大優點是快速、簡便、價格便宜,易被檢驗人員接受。在合適的抗生素及培養溫度、菌液的濃度、培養基厚度等條件下,檢測MRSA是可行的。但Leneastre等[9]對K-B法和特異性mec A基因DNA片段法鑒定MRSA的結果進行了比較,發現在49株用K-B法鑒定為MSSA的菌株,特異性mec A基因DNA片段法鑒定卻有11株含mec A基因;59株用紙片法鑒定為典型MRSA的菌株,有10株卻沒有特異性mec A基因,這兩種方法大約有18%~20%的差異。Chipman[10]等研究也表明以mec A基因檢測法為參考方法時,紙片擴散法的符合率為88.2%。這可能與紙片法中的瓊脂中沒有NaCl成份,一些菌株的耐藥性得不到完全表達有關。因此,為提高紙片擴散法檢測MRSA的可靠性,最好在MH瓊脂中加入40 g/L NaCl。
5.2 肉湯稀釋(MIC)法 美國疾病控制中心(CDC)推薦用MH肉湯培養基加NaCl至20 g/L濃度,同時加入Ca,Mg離子,將苯唑西林進行倍比稀釋,從0.125~16 μg/ml,菌濃度為104/ml,35°C孵育24 h,MIC<2 μg/ml為敏感,>4 μg/ml為耐藥,該法檢出率可達95%,但操作較繁瑣。
5.3 瓊脂稀釋(MIC)法 用含20 g/L NaCl的MH瓊脂將苯唑西林倍比稀釋為12個不同濃度并澆注平皿。苯唑西林量終濃度為0.125~256 μg/ml。再將菌液(0.5麥氏濁度)點種于含藥平皿,35°C孵育24 h。該法適用于大量菌株的MRSA檢測,結果容易判斷,重復性好,但耗時,費力。
5.4 瓊脂篩選法 這是1997年NCCLS推薦的MRSA的確證試驗,即MH培養基加NaCl(40 g/L)加苯唑西林(6 μg/ml),將菌液(0.5麥氏濁度)點種或畫線35°C孵育24 h,只要平皿有菌生長,即使一個菌落也是MRSA,該法敏感度為100%,常用作校正其它方法的標準,尤其適用于檢測抑菌圈直徑處于中介度的金黃色葡萄球菌。
5.5 濃度梯度(Etest)法 是1988年AB Biodisk公司推出,在含20 g/L NaCl的MH瓊脂平板上,貼上苯唑西林的試條,菌液調至0.5~1麥氏濁度,35°C孵育24 h,直接讀取MIC值。MIC<2 μg/ml為敏感,>4 μg/ml為耐藥。Etest法結合了紙片擴散法和肉湯稀釋法的優點,長塑料條含有連續的呈指數梯度變化的苯唑西林(0.016~256 μg/ml),故在檢測低水平或中等程度耐藥的MRSA時結果更為準確。Novak[11]等報道,用Alamar法和Etest法對127株MRSA的檢測比較,兩者結果相關較高,用Etest法檢測127株MRSA,其中93株MIC>256 μg/ml,28株在6~256 μg/ml,檢出率達96%,Etest法具有精確、可靠、穩定性好的特點,但缺點是價格昂貴。
5.6 自動化藥敏檢測 目前有Vitek系統、ATB系統、MicroScan系統、Sensiter ARIS等。將菌液稀釋后注入藥敏板或孔內,然后通過檢測菌液濁度,熒光指示劑的熒光強度或熒光底物的水解反應來判讀結果。其優點是快速,但有時對生長緩慢或延遲表達耐藥性的MRSA,在3~4 h內難以達到檢測水平,容易漏檢或誤報MRSA。
5.7 DNA探針雜交 上述的方法都是檢測MRSA耐藥表型的方法。MRSA根據其耐藥頻率可分為1、2、3、4類,其耐藥頻率為10-7、10-4、10-3以及10-1[12]。上述常規的檢測方法對于3、4類MRSA一般不存在問題,但對于低頻率的1、2類則很容易造成漏檢。因此,對于低水平耐藥或臨界水平耐藥的MRSA,應選擇特異性高的分子生物學方法來檢測。DNA探針雜交是用特異性的mec A DNA片段經地高辛標記,與可疑菌株進行雜交,有學者報告[13],DNA探針僅與MRSA DNA雜交,與MSSA DNA無雜交帶,其特異性高于瓊脂稀釋法,敏感性高于肉湯稀釋法,而且可直接用于臨床標本,無需先進行細菌分離培養,但探針較貴,保存期較短。
5.8 PCR技術 本世紀80年代末期,國外就有人用聚合酶鏈反應(PCR)來檢測PBP2a的mec A基因。它是根據金黃色葡萄球菌TK 784的mec A基因DNA序列[14]設計一引物,再裂解提取被測菌的DNA,在一定條件下進行擴增,經瓊脂糖電泳后在紫外燈下觀察有無與陽性對照菌株(金黃色葡萄球菌ATCC29213)相同的區帶。PCR具有較高的靈敏度,只要被測菌有微量的的基因,即出現陽性結果,因此常作為檢測MRSA的參考方法。陳秀樞實驗表明[14],金黃色葡萄球菌耐苯唑西林的耐藥水平與mec A基因有較好的相關性。MIC>4 μg/ml的22株菌均檢出mec A基因。由于PCR很靈敏,有時會因實驗室的污染而出現假陽性,為使PCR具有更高的可靠性,必須對其擴增產物進行探針雜交或測序以提高特異性[15]。而有一些耐藥基因是沉默基因,不表達mec A基因產物,有時會得出假耐藥結論,所以分子生物學方法并非100%的敏感和特異,加上該法前期處理操作繁瑣,且需要一定的設備,僅在可疑或特殊情況下做此試驗。