<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2019-08-20 10:00 原文鏈接: 研究發現控制細菌生活方式轉變的新機制

      最近,中國科學院微生物研究所錢韋研究組在PLoS Pathogens上在線發表了一項題為Cyclic-di-GMP binds histidine kinase RavS to control RavS-RavR phosphotransfer and regulates the bacterial lifestyle transition between virulence and swimming 的成果,該研究發現一種細菌控制生活方式轉變的生物化學新機制。

      絕大多數動、植物病原細菌是所謂條件型致病菌(opportunistic pathogen)。這類病原在正常生存(free-living)時對寄主無害甚至有益。但是,當它們侵入到寄主體內,或進入到非正常生活的寄主組織中,細菌可能因生境發生劇烈變化(比如受到免疫系統的攻擊)而表達毒力因子,轉而用毒性生活(virulence)來保護自己。例如,共生于人類皮膚表面的金黃色葡萄球菌、銅綠假單胞菌、鏈球菌等細菌對人體無害,而一旦通過傷口進入體內則可能導致嚴重感染和各種機體炎癥。因此,對于條件致病型細菌而言,從自由生存到毒性生活的相互轉變是其生存斗爭的需要,受到細菌細胞感知系統的精細控制。

      這項新研究發現:植物病原細菌-野油菜黃單胞菌細胞內一個名為RavS的受體在控制細菌生存方式轉變中發揮著重要作用:RavS是一種組氨酸激酶,當其處于高磷酸化水平時,它控制細菌游動,但抑制細菌的毒力;但當RavS處于低磷酸化水平時,它雖然對毒力沒有控制作用,但卻抑制細菌的游動性。因此,當細菌需要從自由生存狀態向毒性狀態轉變時,RavS的磷酸化水平必須下降到較低水平。研究發現,這一下降過程是由細菌細胞內第二信使分子c-di-GMP(環二鳥苷單磷酸)嚴格控制的:c-di-GMP直接接合到RavS的ATP酶區,顯著增強了它的磷酸轉移酶活性。在將磷酸基團“甩”給下游反應調節蛋白RavR以后,RavS的磷酸化水平自然回歸到較低水平,從而解除對細菌毒力因子表達的抑制作用。因此,c-di-GMP信號分子與受體RavS的相互作用是調控細菌自由生活向毒性轉變的關鍵環節。

      值得注意的是,在上述控制過程中,細菌雙組分信號轉導系統RavS-RavR之間的特異性關系不但決定于這兩個蛋白的一級序列,而且需要c-di-GMP信號分子的驅動。因此,研究新發現了一種控制細菌雙組分信號轉導系統特異性的生物化學機制,并為發展新型抗菌化合物提供了關鍵分子作用靶標。

    相關文章

    核糖體結合“預組織”的抗生素克服了超級細菌

    哈佛大學和其他地方的研究人員創造了一種合成抗生素,可以非常有效地對抗困擾許多現代抗生素的抗菌素耐藥機制。一篇新的《科學》論文提供了該抗生素的設計、合成和評估的詳細信息,題為“一種預先組織用于核糖體結合......

    微型“龍卷風”為何能導致作物傳染病擴散?

    病原體和細菌不僅會使人類和動物生病,也會對植物造成嚴重破壞,每年造成全球農作物減產超過20%。近日,美國康奈爾大學科研團隊在《科學進展》發表成果,通過使用高速攝像機拍攝真菌孢子的散播過程,揭示了健康植......

    突破|新抗生素顯著增強抑制耐藥菌功效

    細菌的抗生素耐藥性正在使許多現代藥物失效,甚至可能引起全球公共衛生危機。現在,美國哈佛大學研究人員開發的一種新抗生素克服了抗生素耐藥性機制。據最新一期《科學》雜志報道,合成化合物克雷霉素(cresom......

    金納米顆粒有望抑制金黃色葡萄球菌感染

    中國科學院昆明動物研究所研究員賴仞團隊研究獲得了直徑約3納米的多肽修飾的金納米顆粒(Au_CR),對金黃色葡萄球菌表現出特異的抑菌作用,主要通過作用于細菌的細胞膜殺死細菌。相關研究成果日前發表于《納米......

    細菌耐藥難解決?揭秘細菌生物被膜形成新機制

    近日,NucleicAcidsResearch雜志發表了廣東省人民醫院檢驗科顧兵教授、劉曉曉副研究員一項題為“希瓦氏菌通過H-NS蛋白乙酰化降低氮代謝調控因子抑制生物被膜形成”的研究文章。該研究以細菌......

    人鼻中發現新型抗生素物質,可對抗病原體

    德國圖賓根大學研究人員從人類鼻子中發現了一種新的抗生素物質,可用來對抗病原體。這種名為epifadin的分子是由表皮葡萄球菌的特定菌株產生的。他們將epifadin歸為一類前所未知的新型抗菌化合物,它......

    新發現!細菌RNA代謝調控新機制

    近日,中國科學院水生生物研究所張承才團隊關于細菌中RNA代謝調控機制的研究取得了進展。相關研究成果以《藍藻中RNaseE受一個保守蛋白調控》(Aconservedproteininhibitorbri......

    細菌如何識別病毒入侵并激活免疫防御?本文揭曉答案

    地球上沒有任何一種生物的生命是不受威脅——包括細菌。被稱為噬菌體的掠食性病毒是它們最可怕的敵人之一,它們滲透到細胞中進行復制并接管。細菌已經進化出了一系列對抗這些感染的策略,但它們是如何首先發現入侵者......

    得了支原體肺炎需要輸液、“洗肺”嗎?專家解答來啦!

    近期,兒童支原體肺炎廣受關注。患兒什么時候具有傳染性?是否需要輸液、“洗肺”?擔心醫院人多能否自行用藥?記者在11月12日世界肺炎日到來之際,采訪了相關醫學專家。“感染肺炎支原體后,在開始發燒前有幾天......

    揭開致病細菌穿越人體血腦屏障之謎

    記者10月24日從南開大學獲悉,該校王磊教授團隊首次揭示了引起細菌性腦膜炎的3種主要細菌如何利用同一機制穿越血腦屏障的分子機理,這對細菌性腦膜炎防治具有重要意義。該研究成果日前在線發表于國際學術期刊《......

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频