4. 注釋
( 1 ) 每個實驗均使用新鮮的 3 mol/L 甲醇- HCl 和硅烷化試劑。
( 2 ) 要仔細識別蛋白質印跡,因為 WGA 既能識別 N-糖苷的 GlcNAc,也能識別 O-GlcNAc。
( 3 ) 用于在硝酸纖維素印跡膜上封閉結合位點的溶液應避免糖蛋白污染。所以我們建議在這一步驟中使用 Tween-20 來覆蓋硝酸纖維素膜。
( 4 ) 特異性對照:
a. 建議印跡表 25-1 中的蛋白質到硝酸纖維素膜(建議的正對照),獲得親和檢測的正對照。
b. 凝集素結合特異性應在 0.3 mol/L 抑制性糖(表 25-1 ) 濃度下進行親和檢測驗證。
( 5 ) 可用的抗 O-糖苷抗體有:抗
AGP 抗體:LM2 [ 31,32] 、JIM 4、JIM 13、JIM 15 [32]、JIM 8 [33] 、JIM 14、JIM 15
和 JIM 16 [34];抗伸展蛋白抗體:LM 1 [ 35 ] 、JIM 11、 JIM 12、JIM 20 [36] 和 JIM19 [
37] 。
( 6 ) 免疫檢測的 N-糖苷特異性對照:應驗證血清對連接在被測蛋白的 N-糖苷的特異性,可在免疫檢測前先對印跡進行溫和的高碘酸鹽氧化處理,溫和高碘酸鹽處理會氧化糖苷,并消除糖蛋白上抗苷抗體的識別位點。剩下的信號都是蛋白骨架抗體識別的結果 [ 38 ]。
a. 經明膠飽和處理后,將蛋白質印跡膜浸泡在 100 mmol/L 含 100 mmol/L 過碘酸鈉的乙酸鈉緩沖液(pH 4.5 ) 中,室溫下黑暗處理 1 h,30 min 后更換一次浸泡液。
b. 將蛋白質印跡膜浸泡在含 50 mmol/L 硼氫化鈉的 PBS 緩沖液中,室溫下處理 30 min。
c. 用 TBS 漂洗蛋白質印跡膜,用含 1% 凝膠 的 TBS 浸泡蛋白質印跡膜 15 min,進行如 25. 3. 2 節 1. 1 ) 所述的免疫檢測實驗。
( 7 ) 巖藻糖或者木糖的特異性對照:有些蛋白質可被用作 N-糖苷免疫檢測的正對照,源自蜂毒的磷脂酶含有 α-1-3巖藻糖殘基,不含 β-1-2 木糖。源自玉米 的 PHA-L ( 植物血凝素 L ) 和重組抗生物素蛋白是既含 β-1-2 木糖,也含 α-1-3 巖藻糖的糖蛋白 [ 18,40 , 41 ] 。
( 8 ) 這里介紹的方法需要 1 mg 蛋白質,較少的蛋白質使用量也適用。
( 9 ) 用肌醇做內標。
( 10 ) 由于還原性氨化反應是一種激烈的處理,可能會發生一些蛋白質修飾。為此,有時候最好酶切去除 O-糖苷。
( 11 ) 總的來說,我們實驗室不使用化學處理解離糖蛋白上的N - 糖苷。
( 12 ) Nonidet P40 的作用是結合游離的 SDS。
( 13 ) 需要 60~80 mg 的可溶油菜籽蛋白作為初始材料,制備足夠跑一張 2D 凝膠的糖蛋白。
( 14 ) α-甲基甘露糖是刀豆蛋白 A 的配體,它將替換固定化凝集素上的糖蛋白。
( 15 ) 在洗脫親和色譜柱時,我們觀察到一個重要的解離物質刀豆蛋白 A。這一解離物質污染了糖蛋白制備物,迫使我們必須同時跑一張分析用 2D 凝膠,另一張 2D 凝膠只上樣刀豆蛋白 A。染色后,我們選擇只在分析用 2D 凝膠上出現的點,棄除同時在這兩張 2D 凝膠上出現的點。
( 16 ) 150 ml 生長 6 天的擬南芥 cgl 突變體細胞培養物大約相當于 10 g 植物材料。
( 17 ) 細胞壁結合蛋白的去除是純化的第一步,因為這些蛋白不含 O-位 N-乙酰葡糖胺。如果需要就應將這一純化步驟包括在這個方法中。
( 18 ) 自由 O-位 N-乙酰葡糖胺是 WGA 的配體,它將替換固定凝集素上的糖蛋白。
參考文獻
1. Lerouge, P.,
Cabanes-Macheteau, M., Rayon, C., Fischette-Laine, A.-C., Gomord,V.,
and Faye, L. (1998) N-glycosylation biosynthesis in plants: recent
developments and future trends. Plant Mol. Biol.3, 31-48.
2.
Cho, Y. P. and Chrispeels, M . J. (1976) Serine-O-galactosyl linkages
in glyco- peptides from carrot cell wall. Phytochemistry 15, 165-169.
3.
Matsuoka, K., Watanabe N., and N a k a m u r a K. (1995) O-
glycosylation of a precursor to a sweet potato protein, sporamin,
expressed in tobacco cells. Plant J.8, 877-889.
4. Faye, L.,
Boulaflous, A., Benchabane, M., Gomord, V., and Michaud, D. (2005)
Protein modifications in theplant secretory pathway: current states and
practical implications in molecular pharming. Vaccine 23,
1770-1778.
5. Schowalter, A. M . (1993) Structure and function of plant cell wall proteins. PlantCell 5, 9-23.
6.
Moore, P. J., Swords, K. M . M., Lynch, M . A., and Staehelin, L. A.
(1991) Spatial organization of the assembly pathways of glycoproteins
and complex polysaccharides in the Golgi apparatus of plants. J. Cell
Biol. 11 2 , 467-479.
7. Robinson, D., Andreae, M., and Sauer,
A. (1985) Hydroxyproline-rich glycoprotein biosynthesis: a comparison
with that of collagen, in Biochemistry of PlantCell Walls(Brett, C.
T. and Hillman, J. R., eds.), Cambridge University Press, Cambridge, U K
, pp. 155-176.
8. Schowalter, A. M . (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol. Sci.58, 1399-1417.
9.
Hart, G. (1999) T h e O - G l c N A c modification, in Essentials o f
Glycobiology(Varki, A., C u m m i n g s , R., Esko, J., Freeze, H.,
Hart, G., and Marth, J., eds.) Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, N Y , pp. 183-194.
10. Slawson, C. and
Hart, G. (2003) D y n a m i c interplay between O - G l c N A c and
(9-phosphate: the sweet side of protein regulation. Curr. Opin.
Struct. Biol.13, 631-636.
11. Jacobsen, S. E., Binkowski, K.
A., and Olszewski, N. E. (1996) S P I N D L Y , a tetratricopeptide
repeat protein involved in gibberellin signal transduction in
Arabidopsis. Proc. Natl. Acad. Sci. USA93, 9292- 9296.
12.
Thornton, T. M., Swain, S. M., and Olszewski, N. E. (1999) Gibberellin
signal transduction presents ellipsis the S P Y w h o O - G l c N A c M
me. Trends Plant Sci.4, 424-428.
13. Hartweck, L. M., Scott
C. L., and Olsewski, N. E. (2002) T w o O-linked
N-acetylglucosamine transferase genes of Arabidopsis thalianaL.
Heynh. have overlapping functions necessary for gamete and seed
development. Genetics161, 1279-1291.
14. Heese Peck, A., Cole,
R. N., Borkhsenious, O. N., Hart, G. W., and Raikhel, N. V. (1995)
Plant nuclear pore complex proteins are modified by novel
oligosaccharides with terminal A^-acetylglucosamine. Plant Cell7,
1459-1471.
15. Heese Peck, A. and Raikhel, N. V. (1998) A
glycoprotein modified with terminal N-acetylglucosamine and localized
at the nuclear rim shows sequence similarity to aldose-1-epimerases.
Plant Cell10, 599— 612.
16. Holst, B., Bruun, A. W.,
Kielland-Brandt, M . C., and Winther, J. R. (1996) Competition between
folding and glycosylation in the endoplasmic reticulum. EMBOJ.15,
3538-3546.
17. Faye, L., Sturm, A., Bollini, R., Vitale, A., and
Chrispeels, M . J. (1986) The position of the oligosaccharide
side-chains of phytohemagglutinin and their accessibility to
glycosidases determines their subsequent processing in the Golgi. Eur
J.Biochem.158, 655— 661.
18. Bardor, M., Loutelier-Bourhis, C.,
Marvin, L., et al. (1999) Analysis of plant glycoproteins by
matrix-assisted laser desorption ionisation mass spectrometry:
application to the A^-glycosylation of bean phytohemagglutinin. Plant
Physiol.Biochem.37, 319-325.
19. Bardor, M., Faye, L., and
Lerouge, P. (1999) Analysis of the iV- glycosylation of recombinant
glycoproteins produced in transgenic plants. Trends Plant Sci.4,
376-380.
20. Faye, L. and Chrispeels, M . J. (1985)
Characterization of A^-linked oligosaccharides by affinoblotting with
concanavalin A-peroxidase and treatment of the blots with
glycosidases. Anal. Biochem.149, 218-224.
21. Faye, L., G o m o
r d , V., Fitchette-Laine, A.-C., and Chrispeels, M . J. (1993)
Affinity purification of antibodies specific for Asn-linked glycans
containing al->3 fucose or (3l->2 xylose. Anal. Biochem.209,
104-108.
22. Fitchette-Laine, A.-C., G o m o r d V., Cabanes M.,
et al. (1997) A^-glycans harboring the Lewis a epitope are expressed
at the surface of plant cells. Plant J.12, 1411-1417.
23.
Tomiya, N., Kurono, M., Ishihara, H., et al. (1987) Structural analysis
of A^-linked oligosaccharides by a combination of glycopeptidase,
exoglycosidases, and high-performance liquid chromatography, Anal.
Biochem.163, 489-499.
24. O gawa, H., Hijikata, A., A m a n o ,
M., et al. (1996) Structures and contribution to the antigenicity of
oligosaccharides of Japanese cedar {Cryptomeria japonica)pollen
allergen Cry j I: relationship between the structures and antigenic
epitopes of plant /'/-linked complex-type glycans. Glycoconjugate J.
13, 555-566.
25. Linsley, K. B., Chan, S. Y., Chan, S.,
Reinhold, B. B., Lisi, P. J., and Reinhold, V. N. (1994) Applications
of electrospray mass spectrometry to erythropoietin Nand O-linked
glycans. Anal. Biochem. 219, 207-217.
26. Jesperson, S., K o
edam, J. A., Hoogerbrugge, C. M., Tjadn, U. R., V a n der Greef, J.,
and V a n den Brande, J. L. (1996) Characterization of O-glycosylated
precursors of insuline-like growth factor II by matrix-assisted laser
desorption/ioniza- tion mass spectrometry. J. Mass Spectrom. 31, 893-
900.
27. Hanover, J. A., Cohan, C. K., Willingham, M . C., and
Park, M . K. (1987) Olinked N-acetylglucosamine is attached to proteins
of the nuclear pore. J. Biol.
28. Roquemore, E. P., Chou,
T.-Y., and Hart, G. W . (1994) Detection of O-linked
A^-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins.
MethodsEnzymol. 230, 443-460.
29. von Schaewen, A., Sturm, A.,
O'Neill, J., and Chrispeels, M . J. (1993) Isolation of a mutant
Arabidopsisplant that lacks N-acetyl glucosaminyl transferase I and is
unable to synthesize Golgi-modified complex ^/-linked glycans. Plant
Physiol.1 02 , 1109-1118.
30. Bird, C. R., Gearing, A. J. H.,
and Thorpe, R. (1988) T he use of Tween - 2 0 alone as a blocking
agent for the immunoblotting can cause artefactual results. J.
Immunol. Methods 1 0 6, 175-179.
31. Smallwood, M., Yates, E.
A., Willats, W . G. T., Martin, H., and Knox, J. P. (1996) I m m u n o c
h e m i c a l comparison of membrane- associated and secreted
arabinogalactan-proteins in rice and carrot. Planta 1 98 , 452-459.
32.
Yates, E. A., Valdor, J.-F., Haslam, S. M., et al. (1996)
Characterization of carbohydrate structural features recognized by
anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6,
131-139.
33. Pennell, R. I., Janniche L., Kjellbom, P.,
Scofield, G. N., Peart, J. M., and Roberts, K. (1991) Developmental
regulation of a plasma m e m b r a n e arabinogalactan protein epitope
in oilseed rape flowers. Plant Cell 3, 1317-1326.
34. Knox,
J. P., Linstead, P. J. , Peart, J. , Cooper, C., and Roberts, K. (1991)
Develop- mentally-regulated epitopes of cell surface arabinogalactan
proteins and their relation to root tissue pattern formation. Plant
J.1, 317-326.
35. Smallwood, M., Martin, H., and Knox, J. P.
(1995) A n epitope of rice threonine- and hydroxyproline-rich
glycoprotein is c o m m o n to cell wall and hydrophobic
plasma-membrane glycoproteins. Planta 1 9 6, 510- 522.
36.
Smallwood, M., Beven, A. Donovan, N., et al. (1994) Localization of
cell wall proteins in relation to the developmental anatomy of the
carrot root apex. Plant J.5, 237-246.
37. Knox, J. P., Peart,
J., and Neill, S. J. (1995) Identification of novel cell surface
epitopes using a leaf epidermal-strip assay system. Planta 1 9 6,
266-270.
38. Laine, A.-C. and Faye, L. (1988) Significant
immunological cross- reactivity of plant glycoproteins.
Electrophoresis 9 , 841-844.
39. Kubelka, V., Altmann, F.,
Staudacher, E., et al. (1993) Primary structures of the A-linked
carbohydrate chains from honeybee v e n o m phospholipase A 2. Eur.
J.Biochem. 213,1193-1204.
40. Vitale, A., Warner, T. G., and
Chrispeels, M . J. (1984) Phaseolus vulgarisphytohemagglutinin
contains high-mannose and modified oligoasaccharide chains. Planta160,
256— 263.
41. Bardor, M., Loutelier-Bourhis, C., Paccalet, T.,
et al. (2003) Monoclonal C5-1 antibody produced in transgenic alfalfa
plants exhibits a N-glycosylation that is homogeneous and suitable for
glyco-engineering into a human-compatible structure, Plant Biotech.
J.1, 451-462.
42. Shibuya, N., Goldstein, I. J., van D a m m e ,
E. J. M., and Peumans, W . J. (1988) Binding properties of a
mannose-specific lectin from the snowdrop (Galanthusnivealis)bulb. J.
Biol. Chem.263, 728-734.
43. Animashaun, T., M a h m o o d ,
N, Hay, A. J., and Hughes, R. C. (1993) Inhibitory effect of novel
mannose-binding lectins on HIV- infectivity and syncitium formation.
Antiv. Chem. Chemother. 4, 145— 153.
44. Nagata, Y. and Burger,
M . M . (1974) W h e a t germ agglutinin. Molecular characteristics
and specificity for sugar binding. J. Biol. Chem.249, 3116- 3122.