<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2019-11-08 17:15 原文鏈接: 植物蛋白質組學和糖基化(二)

    4. 注釋

    ( 1 ) 每個實驗均使用新鮮的 3 mol/L 甲醇- HCl 和硅烷化試劑

    ( 2 ) 要仔細識別蛋白質印跡,因為 WGA 既能識別 N-糖苷的 GlcNAc,也能識別 O-GlcNAc。

    ( 3 ) 用于在硝酸纖維素印跡膜上封閉結合位點的溶液應避免糖蛋白污染。所以我們建議在這一步驟中使用 Tween-20 來覆蓋硝酸纖維素膜。

    ( 4 ) 特異性對照:

    a. 建議印跡表 25-1 中的蛋白質到硝酸纖維素膜(建議的正對照),獲得親和檢測的正對照。

    b. 凝集素結合特異性應在 0.3 mol/L 抑制性糖(表 25-1 ) 濃度下進行親和檢測驗證。

    ( 5 ) 可用的抗 O-糖苷抗體有:抗 AGP 抗體:LM2 [ 31,32] 、JIM 4、JIM 13、JIM 15 [32]、JIM 8 [33] 、JIM 14、JIM 15 和 JIM 16 [34];抗伸展蛋白抗體:LM 1 [ 35 ] 、JIM 11、 JIM 12、JIM 20 [36] 和  JIM19 [ 37] 。

    ( 6 ) 免疫檢測的 N-糖苷特異性對照:應驗證血清對連接在被測蛋白的 N-糖苷的特異性,可在免疫檢測前先對印跡進行溫和的高碘酸鹽氧化處理,溫和高碘酸鹽處理會氧化糖苷,并消除糖蛋白上抗苷抗體的識別位點。剩下的信號都是蛋白骨架抗體識別的結果 [ 38 ]。

    a. 經明膠飽和處理后,將蛋白質印跡膜浸泡在 100 mmol/L 含 100 mmol/L 過碘酸鈉的乙酸鈉緩沖液(pH 4.5 ) 中,室溫下黑暗處理 1 h,30 min 后更換一次浸泡液。

    b. 將蛋白質印跡膜浸泡在含 50 mmol/L 硼氫化鈉的 PBS 緩沖液中,室溫下處理 30 min。

    c. 用 TBS 漂洗蛋白質印跡膜,用含 1% 凝膠 的 TBS 浸泡蛋白質印跡膜 15 min,進行如 25. 3. 2 節 1. 1 ) 所述的免疫檢測實驗。

    ( 7 ) 巖藻糖或者木糖的特異性對照:有些蛋白質可被用作 N-糖苷免疫檢測的正對照,源自蜂毒的磷脂酶含有 α-1-3巖藻糖殘基,不含 β-1-2 木糖。源自玉米 的 PHA-L ( 植物血凝素 L ) 和重組抗生物素蛋白是既含 β-1-2 木糖,也含 α-1-3 巖藻糖的糖蛋白 [ 18,40 , 41 ] 。

    ( 8 ) 這里介紹的方法需要 1 mg 蛋白質,較少的蛋白質使用量也適用。

    ( 9 ) 用肌醇做內標。

    ( 10 ) 由于還原性氨化反應是一種激烈的處理,可能會發生一些蛋白質修飾。為此,有時候最好酶切去除 O-糖苷。

    ( 11 ) 總的來說,我們實驗室不使用化學處理解離糖蛋白上的N - 糖苷。

    ( 12 ) Nonidet  P40 的作用是結合游離的 SDS

    ( 13 ) 需要 60~80 mg 的可溶油菜籽蛋白作為初始材料,制備足夠跑一張 2D 凝膠的糖蛋白。

    ( 14 ) α-甲基甘露糖是刀豆蛋白 A 的配體,它將替換固定化凝集素上的糖蛋白。

    ( 15 ) 在洗脫親和色譜柱時,我們觀察到一個重要的解離物質刀豆蛋白 A。這一解離物質污染了糖蛋白制備物,迫使我們必須同時跑一張分析用 2D 凝膠,另一張 2D 凝膠只上樣刀豆蛋白 A。染色后,我們選擇只在分析用 2D 凝膠上出現的點,棄除同時在這兩張 2D 凝膠上出現的點。

    ( 16 ) 150 ml 生長 6 天的擬南芥 cgl 突變體細胞培養物大約相當于 10 g 植物材料。

    ( 17 ) 細胞壁結合蛋白的去除是純化的第一步,因為這些蛋白不含 O-位 N-乙酰葡糖胺。如果需要就應將這一純化步驟包括在這個方法中。

    ( 18 ) 自由 O-位 N-乙酰葡糖胺是 WGA 的配體,它將替換固定凝集素上的糖蛋白。


    參考文獻

    1.  Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Laine, A.-C.,  Gomord,V., and Faye, L. (1998) N-glycosylation biosynthesis in plants:  recent developments and future trends.  Plant Mol. Biol.3, 31-48.

    2.  Cho, Y. P. and Chrispeels, M . J. (1976) Serine-O-galactosyl linkages  in glyco- peptides from carrot cell wall.  Phytochemistry  15,  165-169.

    3.  Matsuoka, K., Watanabe N., and N a k a m u r a K. (1995) O- glycosylation of a precursor to a sweet potato protein, sporamin, expressed in tobacco cells.   Plant J.8, 877-889.

    4.  Faye, L., Boulaflous, A., Benchabane, M., Gomord, V., and Michaud, D.  (2005) Protein modifications in theplant secretory pathway: current  states and practical implications in molecular pharming.  Vaccine  23,   1770-1778.

    5.  Schowalter, A. M . (1993) Structure and function of plant cell wall  proteins.  PlantCell  5,  9-23.

    6.  Moore, P. J., Swords, K. M . M., Lynch, M . A., and Staehelin, L. A.  (1991) Spatial organization of the assembly pathways of glycoproteins and  complex polysaccharides in the Golgi apparatus of plants.  J. Cell Biol.  11 2 , 467-479.

    7.  Robinson, D., Andreae, M., and Sauer, A. (1985) Hydroxyproline-rich  glycoprotein biosynthesis: a comparison with that of collagen, in  Biochemistry   of PlantCell  Walls(Brett, C. T. and Hillman, J. R., eds.), Cambridge  University Press, Cambridge, U K , pp. 155-176.

    8.  Schowalter, A. M . (2001) Arabinogalactan-proteins: structure,  expression and function.  Cell Mol. Sci.58, 1399-1417.

    9.  Hart, G. (1999) T h e O - G l c N A c modification, in  Essentials  o  f Glycobiology(Varki, A., C u m m i n g s , R., Esko, J., Freeze, H.,  Hart, G., and Marth, J., eds.) Cold Spring Harbor Laboratory Press, Cold  Spring Harbor, N Y , pp. 183-194.

    10.  Slawson, C. and Hart, G. (2003) D y n a m i c interplay between O - G  l c N A c and (9-phosphate: the sweet side of protein regulation. Curr.   Opin.  Struct.  Biol.13, 631-636.

    11.  Jacobsen, S. E., Binkowski, K. A., and Olszewski, N. E. (1996) S P I  N D L Y , a tetratricopeptide repeat protein involved in gibberellin  signal transduction in Arabidopsis. Proc. Natl. Acad. Sci.  USA93, 9292- 9296.

    12.  Thornton, T. M., Swain, S. M., and Olszewski, N. E. (1999)  Gibberellin signal transduction presents ellipsis the S P Y w h o O - G l  c N A c M me.  Trends Plant Sci.4, 424-428.

    13.  Hartweck, L.  M.,  Scott C.  L.,  and Olsewski, N.  E.  (2002) T w o   O-linked N-acetylglucosamine transferase genes of  Arabidopsis  thalianaL.  Heynh. have overlapping functions necessary for gamete and seed  development.  Genetics161, 1279-1291.

    14.  Heese Peck, A., Cole, R. N., Borkhsenious, O. N., Hart, G. W., and  Raikhel, N. V. (1995) Plant nuclear pore complex proteins are modified by  novel oligosaccharides with terminal A^-acetylglucosamine.  Plant Cell7, 1459-1471.

    15.  Heese Peck, A. and Raikhel, N. V. (1998) A glycoprotein modified with  terminal N-acetylglucosamine and localized at the nuclear rim shows  sequence similarity to aldose-1-epimerases.  Plant Cell10, 599— 612.

    16.  Holst, B., Bruun, A. W., Kielland-Brandt, M . C., and Winther, J. R.  (1996) Competition between folding and glycosylation in the endoplasmic reticulum.   EMBOJ.15, 3538-3546.

    17.  Faye, L., Sturm, A., Bollini, R., Vitale, A., and Chrispeels, M . J.  (1986) The position of the oligosaccharide side-chains of phytohemagglutinin and their  accessibility to glycosidases determines their subsequent processing in the  Golgi.  Eur J.Biochem.158, 655— 661.

    18.  Bardor, M., Loutelier-Bourhis, C., Marvin, L., et al. (1999) Analysis  of plant glycoproteins by matrix-assisted laser desorption ionisation mass  spectrometry: application to the A^-glycosylation of bean  phytohemagglutinin. Plant Physiol.Biochem.37, 319-325.

    19.  Bardor, M., Faye, L., and Lerouge, P. (1999) Analysis of the iV- glycosylation of recombinant glycoproteins produced in transgenic plants.  Trends  Plant  Sci.4, 376-380.

    20.  Faye, L. and Chrispeels, M . J. (1985) Characterization of A^-linked  oligosaccharides by affinoblotting with concanavalin A-peroxidase and treatment of  the blots with glycosidases.  Anal. Biochem.149, 218-224.

    21.  Faye, L., G o m o r d , V., Fitchette-Laine, A.-C., and Chrispeels, M  . J. (1993) Affinity purification of antibodies specific for Asn-linked glycans containing  al->3 fucose or (3l->2 xylose.  Anal. Biochem.209, 104-108.

    22.  Fitchette-Laine, A.-C., G o m o r d V., Cabanes M., et al. (1997)  A^-glycans harboring the Lewis a epitope are expressed at the surface of plant cells.   Plant J.12, 1411-1417.

    23.  Tomiya, N., Kurono, M., Ishihara, H., et al. (1987) Structural  analysis of A^-linked oligosaccharides by a combination of glycopeptidase,  exoglycosidases, and high-performance liquid chromatography,  Anal. Biochem.163, 489-499.

    24.  O gawa, H., Hijikata, A., A m a n o , M., et al. (1996) Structures  and contribution to the antigenicity of oligosaccharides of Japanese cedar   {Cryptomeria japonica)pollen allergen  Cry j I: relationship between the  structures and antigenic epitopes of plant /'/-linked complex-type  glycans.  Glycoconjugate J.  13,  555-566.

    25.  Linsley, K. B., Chan, S. Y., Chan, S., Reinhold, B. B., Lisi, P. J.,  and Reinhold, V. N. (1994) Applications of electrospray mass spectrometry  to erythropoietin  Nand O-linked glycans.  Anal. Biochem.  219,  207-217.

    26.  Jesperson, S., K o edam, J. A., Hoogerbrugge, C. M., Tjadn, U. R., V  a n der Greef, J., and V a n den Brande, J. L. (1996) Characterization of  O-glycosylated precursors of insuline-like growth factor II by matrix-assisted laser  desorption/ioniza- tion mass spectrometry.  J. Mass Spectrom.  31,  893- 900.

    27.  Hanover, J. A., Cohan, C. K., Willingham, M . C., and Park, M . K.  (1987) Olinked N-acetylglucosamine is attached to proteins of the nuclear  pore.  J.  Biol.

    28.  Roquemore, E. P., Chou, T.-Y., and Hart, G. W . (1994) Detection of  O-linked A^-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear  proteins.  MethodsEnzymol.  230, 443-460.

    29.  von Schaewen, A., Sturm, A., O'Neill, J., and Chrispeels, M . J.  (1993) Isolation of a mutant  Arabidopsisplant that lacks N-acetyl  glucosaminyl transferase I and is unable to synthesize Golgi-modified  complex ^/-linked glycans.  Plant Physiol.1 02 ,  1109-1118.

    30.  Bird, C. R., Gearing, A. J. H., and Thorpe, R. (1988) T he use of  Tween - 2 0 alone as  a blocking agent for the  immunoblotting can cause  artefactual results. J. Immunol. Methods  1 0 6,  175-179.

    31.  Smallwood, M., Yates, E. A., Willats, W . G. T., Martin, H., and  Knox, J. P. (1996) I m m u n o c h e m i c a l  comparison  of  membrane- associated  and  secreted arabinogalactan-proteins in rice and carrot.   Planta  1 98 ,  452-459.

    32.  Yates, E. A., Valdor, J.-F., Haslam, S. M., et al. (1996)  Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein  monoclonal antibodies.  Glycobiology 6,  131-139.

    33.  Pennell, R. I., Janniche L., Kjellbom, P., Scofield, G. N., Peart, J.  M., and Roberts, K. (1991) Developmental regulation of a plasma m e m b r a n e  arabinogalactan protein epitope in oilseed rape flowers.  Plant Cell  3,   1317-1326.

    34.  Knox, J. P., Linstead, P. J. , Peart, J. , Cooper, C., and  Roberts, K. (1991) Develop- mentally-regulated epitopes of cell surface  arabinogalactan proteins and their relation to root tissue pattern  formation.  Plant J.1, 317-326.

    35.  Smallwood, M., Martin, H., and Knox, J. P. (1995) A n epitope of rice  threonine- and hydroxyproline-rich glycoprotein is c o m m o n to cell  wall and hydrophobic plasma-membrane glycoproteins.  Planta  1 9 6,  510- 522.

    36.  Smallwood, M., Beven, A. Donovan, N., et al. (1994) Localization of  cell wall proteins in relation to the developmental anatomy of the carrot  root apex.  Plant J.5, 237-246.

    37.  Knox, J. P., Peart, J., and Neill, S. J. (1995) Identification of  novel cell surface epitopes using a leaf epidermal-strip assay system.   Planta  1 9 6, 266-270.

    38.  Laine, A.-C. and Faye, L. (1988) Significant immunological cross- reactivity of plant glycoproteins.  Electrophoresis  9 ,  841-844.

    39.  Kubelka, V., Altmann, F., Staudacher, E., et al. (1993) Primary  structures of the A-linked carbohydrate chains from honeybee v e n o m phospholipase A 2.  Eur.  J.Biochem. 213,1193-1204.

    40.  Vitale, A., Warner, T. G., and Chrispeels, M . J. (1984)  Phaseolus  vulgarisphytohemagglutinin contains high-mannose and modified oligoasaccharide chains.  Planta160, 256— 263.

    41.  Bardor, M., Loutelier-Bourhis, C., Paccalet, T., et al. (2003)  Monoclonal C5-1 antibody produced in transgenic alfalfa plants exhibits a  N-glycosylation that is homogeneous and suitable for glyco-engineering  into a human-compatible structure,  Plant Biotech. J.1, 451-462.

    42.  Shibuya, N., Goldstein, I. J., van D a m m e , E. J. M., and Peumans,  W . J. (1988) Binding properties of a mannose-specific lectin from the  snowdrop  (Galanthusnivealis)bulb.  J. Biol.  Chem.263, 728-734.

    43.  Animashaun, T., M a h m o o d , N, Hay, A. J., and Hughes, R. C.  (1993) Inhibitory effect of novel mannose-binding lectins on HIV- infectivity and syncitium formation.  Antiv. Chem.  Chemother. 4, 145— 153.

    44.  Nagata, Y. and Burger, M . M . (1974) W h e a t germ agglutinin.  Molecular characteristics and specificity for sugar binding.  J. Biol. Chem.249, 3116- 3122.

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频