近日,由南京大學物理學院高力波教授團隊領銜,協同學院四個青年學者團隊,以“質子輔助生長超平整石墨烯薄膜”為題,在《自然》雜志上發表了將質子輔助生長用于高質量石墨烯制備的研究成果。這項工作,不僅探索出了一種可控生長超平整石墨烯薄膜的方法,更為重要的是,該團隊還發現了這種生長方法的內在機制,即質子輔助,這種方法有望推廣到柔性電子學、高頻晶體管等更多重要的研究領域。
據悉,該成果所涉及的化學氣相沉積方法(CVD)生長石墨烯,是目前制備大面積、高品質單晶晶粒或者薄膜的最主要方法。然而,由于石墨烯與基質材料能夠產生強耦合作用,使得石墨烯在生長過程中會形成褶皺。這一現象嚴重限制了大尺度均一薄膜的制備,阻礙著二維材料的進一步發展應用。
“CVD石墨烯中的褶皺是影響其物性的重要瓶頸。”高力波告訴記者,CVD石墨烯中的褶皺,來源于石墨烯與生長基體的熱脹率差異,石墨烯生長于銅或者鉑等生長基體,生長溫度多在600度以上,生長完成后降至室溫便引起石墨烯的褶皺。褶皺的存在,會影響石墨烯的優良特性,然而,究竟在多大程度上能夠影響其性能,并沒有完整的對比數據。“如何徹底地消除褶皺,并制備出超平整的石墨烯薄膜,逐漸成為其品質跨越式提升的重點和難點。”高力波說道。
研究團隊嘗試過多種消除褶皺的方法,但效果都不盡如人意,僅剩下減弱石墨烯與生長基體之間耦合作用的唯一途徑。在總結大量實驗的基礎上,高力波團隊發現,高比例的熱氫氣(H2),會在一定程度上,弱化石墨烯與生長基體之間的耦合作用。同時,研究人員通過理論模擬發現,處在石墨烯與銅基體之間的氫,在大濃度、高溫的條件下,可以起到減弱二者耦合的作用。在熱氫氣的組分中,質子和電子可以自由穿梭于石墨烯的蜂窩狀晶格。因此,研究人員推測,質子在穿透石墨烯后,有一定概率會再次與電子組合成氫。
“課題組通過氫氣、氘氣(D2)、氦氣(He)等離子體的作用效果對比,驗證了所設想的模型。”高力波介紹,增加質子密度,成為減弱二者耦合作用的關鍵途徑。有鑒于此,研究團隊采用氫氣等離子體處理褶皺化的石墨烯薄膜,并輔以高溫,逐步減弱并消除石墨烯褶皺。如果在生長石墨烯的同時,引入氫氣等離子體,則生長出來的石墨烯完全無褶皺。
為了全方位表征無褶皺化的石墨烯薄膜,通過多種物性測量,包括掃描隧道顯微鏡(STM)觀測摩爾條紋和掃描隧道譜(STS)、角分辨光電子能譜(ARPES)直觀觀測石墨烯與銅基體的耦合作用變化、變溫拉曼光譜表征熱漲率差異等,都表明了這種超平整的石墨烯薄膜,處于與生長基體脫耦合、無摻雜的狀態。由于石墨烯薄膜的超平整特性,因此在清除石墨烯表面其他物質,尤其是石墨烯轉移過程中產生的轉移介質PMMA殘留時,表現出極易清潔的優點。
此外,為了凸顯超平整石墨烯薄膜的優點,即大尺寸和高品質,研究人員還進行了不同線寬下的石墨烯量子霍爾效應的測量,線寬分別為2μm、20μm、100μm、500μm。此前,有礙于大尺寸石墨烯樣品的均勻性,石墨烯量子霍爾效應出現的最大線寬為50μm,而生長出來的超平整石墨烯薄膜,量子霍爾效應出現的閾值條件,和1μm線寬時測量的本征石墨烯幾乎相當。更重要的是,對于不同線寬測量,他們的平臺出現閾值幾乎不變。“這表明只有消除褶皺,才能在最大程度上實現大尺寸石墨烯的均質化、高品質。”高力波表示,質子輔助的CVD方法不僅能夠盡可能維持石墨烯的固有性質,還將對今后制備其他種類的納米材料具有普適性。
天津大學納米顆粒與納米系統國際研究中心的馬雷教授團隊攻克了長期以來阻礙石墨烯電子學發展的關鍵技術難題,在保證石墨烯優良特性的前提下,打開了石墨烯帶隙,成為開啟石墨烯芯片制造領域大門的重要里程碑。該研究......
近日,我國研究團隊創造了世界上第一個由石墨烯制成的功能半導體,相關論文發表在權威期刊Nature雜志上。論文名為“Ultrahigh-mobilitysemiconductingepitaxialgr......
“后摩爾時代,放過石墨烯(Graphene)吧。”這是兩年前中國科學院院士、北京石墨烯研究院院長劉忠范說過的話。石墨烯,一個“新材料之王”,一個曾經在2021年在“全球IEEE(電氣和電子工程師協會)......
美國佐治亞理工學院研究人員創造了世界上第一個由石墨烯制成的功能半導體。該項突破為開發全新電子產品打開了大門。研究發表在《自然》雜志上。石墨烯和碳化硅的分子模型。圖片來源:佐治亞理工學院石墨烯是由已知最......
英國曼徹斯特大學國家石墨烯研究所的科研人員發現了一種利用光加速石墨烯質子傳輸的方法,可能會改變氫氣產生方式。相關研究結果發表在《自然通訊》上。質子傳輸是許多可再生能源技術的關鍵步驟,例如氫燃料電池和太......
美國西北大學、波士頓學院和麻省理工學院研究人員從人腦中汲取靈感,開發出一種能夠進行更高層次思維的新型突觸晶體管,可像人腦一樣同時處理和存儲信息。在新的實驗中,研究人員證明晶體管對數據進行分類的能力,超......
英國曼徹斯特大學國家石墨烯研究所的科研人員發現了一種利用光加速石墨烯質子傳輸的方法,可能會改變氫氣產生方式。相關研究結果發表在《自然通訊》上。質子傳輸是許多可再生能源技術的關鍵步驟,例如氫燃料電池和太......
英國曼徹斯特大學國家石墨烯研究所的科研人員發現了一種利用光加速石墨烯質子傳輸的方法,可能會改變氫氣產生方式。相關研究結果發表在《自然通訊》上。質子傳輸是許多可再生能源技術的關鍵步驟,例如氫燃料電池和太......
“95后天才少年”曹原最近有了新動向。據加州大學伯克利分校(UniversityofCalifornia,Berkeley)學校官網顯示,27歲的天才少年曹原將于2024年7月起正式擔任該校電子工程與......
毛細管電色譜(CEC)因兼具高效液相色譜(HPLC)的高選擇性和毛細管電泳(CE)的高分離效率而受到越來越多研究者的關注。在毛細管電色譜中,選擇合適的固定相材料對獲得優異的分離效果起著十分重要的作用。......