結果:
腫瘤微球體生長在超低粘附板中
A 96孔板 |
|
![]() |
Figure 2A: 生長在96孔超低粘附板中的HepG2腫瘤微球體的全孔TIFF圖像,圖像底部顯示了加入每孔的阿霉素濃度。2B-C:藥物量效曲線(mean±SEM,n=6) |
B |
C |
![]() |
![]() |
A 384孔板 |
|
![]() |
Figure 3A:生長在384孔超低粘附板中的HepG2腫瘤微球體的全孔TIFF圖像,圖像底部顯示了加入每孔的阿霉素濃度。3B-C:藥物量效曲線(mean±SEM,n=8) |
B |
C |
![]() |
![]() |
腫瘤微球體生長在軟瓊脂中
A |
B |
C |
![]() |
![]() |
|
D |
||
![]() |
Figure 4A: 生長在96孔板軟瓊脂中的HepG2腫瘤微球體的全孔TIFF圖像,圖像上顯示了加入每孔的阿霉素濃度。4B-D:藥物量效曲線(mean±SEM,n=3) |
A |
B |
C |
![]() |
![]() |
|
D |
||
![]() |
Figure 5A: 生長在384孔板軟瓊脂中的HepG2腫瘤微球體的全孔TIFF圖像,圖像上顯示了加入每孔的阿霉素濃度。5B-D:藥物量效曲線(mean±SEM,n=4) |
總結:
生長在 3D培養系統中的細胞群體、不同細胞類型、微組織結構相互協調、相互作用,模擬了生命物質在體內微環境中的真實生存環境,為研究者對疾病的剖析和攻克提供了高質量的數據信息。我們在96和384微孔板中建立了兩種簡單且穩定的進行腫瘤微球體3D培養的方法,通過染色和圖像采集,獲得數目、面積、體積和熒光強度等信息。藥物量效曲線的一致性結果體現了兩種方法的可靠性和可重復性,這些數據表明acumen hci激光掃描系統是對基于兩種培養系統獲得的腫瘤微球體進行高通量(5分鐘/板)分析的理想平臺,該平臺在過去的研究中已經被廣泛地應用于腫瘤學[7-9]和干細胞研究領域[10-12]。
References:
1. Maria V, Sharon G, Frances B, et al. Advances in establishment and analysis of three dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 2012, 10:29
2. Patricio G, Nicola J H, Ute A, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol, 2013, 87(8): 1315-1530
3. Yinzhi L, Amish A, Ke Ch, et al. Neural Cell 3D Microtissue Formation is Marked by Cytokines’ Up-Regulation. PLoS One, 2011, 6(10): e26821
4. Yesl J, Ah R K, Jae S L. 3D co-culturing model of primary pancreatic islets and hepatocytes in hybrid spheroid to overcome pancreatic cell shortage. Biomaterials, 2013, 34(15): 3784-3794
5. Anna I A, Brenda K M, Glen D P, et al. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials, 2012, 33(18): 4700-4711
6. Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell, 2013, 12(5): 520-530
7. Weijuan W, Chen Bi, Kelly M C, et al. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin Cancer Res, 2013, 19(20): 5699–5710
8. Kai W, Ho Y L, Shephanie S, et al. Genomic Landscape of Copy Number Aberrations Enables the Identification of Oncogenic Drivers in Hepatocellular Carcinoma. Hepatology, 2013, 58(2): 706-717
9. Shane R H, Jeremy T, Anthony P O, et al. An HTS-Compatible 3D Colony Formation Assay to Identify Tumor-Specific Chemotherapeutics. J Biomol Screening, 2013, 18(10): 1298-1308
10. Koppany V, Hydeyuki O, Robert D, et al. A molecular screening approach to identify and characterize Inhibitors of glioblastoma stem cells. Mol Cancer Ther, 10(10), 1818-1828
11. Anne D, Jimmy E, Richard J S, et al. CXCR4 Expression in Prostate Cancer Progenitor Cells. PLoS One, 2012, 7(2): e31226
12. Claudia P, Ina K, Leoni K. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol, 2013, 108(3), 378-387