<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 結果:

    腫瘤微球體生長在超低粘附板中

     A          96孔板                                               


    Figure 2A: 生長在96孔超低粘附板中的HepG2腫瘤微球體的全孔TIFF圖像,圖像底部顯示了加入每孔的阿霉素濃度。2B-C:藥物量效曲線(mean±SEM,n=6)

     B

     C

     

     A          384孔板                                          


    Figure 3A:生長在384孔超低粘附板中的HepG2腫瘤微球體的全孔TIFF圖像,圖像底部顯示了加入每孔的阿霉素濃度。3B-C:藥物量效曲線(mean±SEM,n=8)

     B

     C

    腫瘤微球體生長在軟瓊脂中

     A

     B

       

     D



      Figure 4A: 生長在96孔板軟瓊脂中的HepG2腫瘤微球體的全孔TIFF圖像,圖像上顯示了加入每孔的阿霉素濃度。4B-D:藥物量效曲線(mean±SEM,n=3)

     

     A

     B

       

     D



     

    Figure 5A: 生長在384孔板軟瓊脂中的HepG2腫瘤微球體的全孔TIFF圖像,圖像上顯示了加入每孔的阿霉素濃度。5B-D:藥物量效曲線(mean±SEM,n=4)


    總結:

    生長在 3D培養系統中的細胞群體、不同細胞類型、微組織結構相互協調、相互作用,模擬了生命物質在體內微環境中的真實生存環境,為研究者對疾病的剖析和攻克提供了高質量的數據信息。我們在96和384微孔板中建立了兩種簡單且穩定的進行腫瘤微球體3D培養的方法,通過染色和圖像采集,獲得數目、面積、體積和熒光強度等信息。藥物量效曲線的一致性結果體現了兩種方法的可靠性和可重復性,這些數據表明acumen hci激光掃描系統是對基于兩種培養系統獲得的腫瘤微球體進行高通量(5分鐘/板)分析的理想平臺,該平臺在過去的研究中已經被廣泛地應用于腫瘤學[7-9]和干細胞研究領域[10-12]。



     

    References:

     

    1. Maria V, Sharon G, Frances B, et al. Advances in establishment and analysis of three dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 2012, 10:29

     

    2. Patricio G, Nicola J H, Ute A, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol, 2013, 87(8): 1315-1530

     

    3. Yinzhi L, Amish A, Ke Ch, et al. Neural Cell 3D Microtissue Formation is Marked by Cytokines’ Up-Regulation. PLoS One, 2011, 6(10): e26821

     

    4. Yesl J, Ah R K, Jae S L. 3D co-culturing model of primary pancreatic islets and hepatocytes in hybrid spheroid to overcome pancreatic cell shortage. Biomaterials, 2013, 34(15): 3784-3794

     

    5. Anna I A, Brenda K M, Glen D P, et al. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials, 2012, 33(18): 4700-4711

     

    6. Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell, 2013, 12(5): 520-530

     

    7. Weijuan W, Chen Bi, Kelly M C, et al. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin Cancer Res, 2013, 19(20): 5699–5710

     

    8. Kai W, Ho Y L, Shephanie S, et al. Genomic Landscape of Copy Number Aberrations Enables the Identification of Oncogenic Drivers in Hepatocellular Carcinoma. Hepatology, 2013, 58(2): 706-717

     

    9. Shane R H, Jeremy T, Anthony P O, et al. An HTS-Compatible 3D Colony Formation Assay to Identify Tumor-Specific Chemotherapeutics. J Biomol Screening, 2013, 18(10): 1298-1308

     

    10. Koppany V, Hydeyuki O, Robert D, et al. A molecular screening approach to identify and characterize Inhibitors of glioblastoma stem cells. Mol Cancer Ther, 10(10), 1818-1828

     

    11. Anne D, Jimmy E, Richard J S, et al. CXCR4 Expression in Prostate Cancer Progenitor Cells. PLoS One, 2012, 7(2): e31226

     

    12. Claudia P, Ina K, Leoni K. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol, 2013, 108(3), 378-387


    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频