4.超聲波技術
超聲波定位目前大多數采用反射式測距法。系統由一個主測距器和若干個電子標簽組成,主測距器可放置于移動機器人本體上,各個電子標簽放置于室內空間的固定位置。
定位過程如下:先由上位機發送同頻率的信號給各個電子標簽,電子標簽接收到后又反射傳輸給主測距器,從而可以確定各個電子標簽到主測距器之間的距離,并得到定位坐標。
目前,比較流行的基于超聲波室內定位的技術還有兩種:一種為將超聲波與射頻技術結合進行定位。由于射頻信號傳輸速率接近光速,遠高于射頻速率,那么可以利用射頻信號先激活電子標簽而后使其接收超聲波信號,利用時間差的方法測距。這種技術成本低,功耗小,精度高。另一種為多超聲波定位技術。該技術采用全局定位,可在移動機器人身上4個朝向安裝4個超聲波傳感器,將待定位空間分區,由超聲波傳感器測距形成坐標,總體把握數據,抗干擾性強,精度高,而且可以解決機器人迷路問題。
超聲波定位精度可達厘米級,精度比較高。缺陷是超聲波在傳輸過程中衰減明顯從而影響其定位有效范圍。
5.藍牙技術
藍牙定位基于RSSI(Received Signal Strength Indication,信號場強指示)定位原理。根據定位端的不同,藍牙定位方式分為網絡側定位和終端側定位。
網絡側定位系統由終端(手機等帶低功耗藍牙的終端)、藍牙beacon節點,藍牙網關,無線局域網及后端數據服務器構成。其具體定位過程是:
1)首先在區域內鋪設beacon和藍牙網關。
2)當終端進入beacon信號覆蓋范圍,終端就能感應到beacon的廣播信號,然后測算出在某beacon下的RSSI值通過藍牙網關經過wifi網絡傳送到后端數據服務器,通過服務器內置的定位算法測算出終端的具體位置。
終端側定位系統由終端設備(如嵌入SDK軟件包的手機)和beacon組成。其具體定位原理是:
1)首先在區域內鋪設藍牙信標
2)beacon不斷的向周圍廣播信號和數據包
3)當終端設備進入beacon信號覆蓋的范圍,測出其在不同基站下的RSSI值,然后再通過手機內置的定位算法測算出具體位置。
終端側定位一般用于室內定位導航,精準位置營銷等用戶終端;而網絡側定位主要用于人員跟蹤定位,資產定位及客流分析等情境之中。藍牙定位的優勢在于實現簡單,定位精度和藍牙信標的鋪設密度及發射功率有密切關系。并且非常省電,可通過深度睡眠、免連接、協議簡單等方式達到省電目的。
6.慣性導航技術
這是一種純客戶端的技術,主要利用終端慣性傳感器采集的運動數據,如加速度傳感器、陀螺儀等測量物體的速度、方向、加速度等信息,基于航位推測法,經過各種運算得到物體的位置信息。
隨著行走時間增加,慣性導航定位的誤差也在不斷累積。需要外界更高精度的數據源對其進行校準。所以現在慣性導航一般和WiFi指紋結合在一起, 每過一段時間通過WiFi請求室內位置,以此來對MEMS產生的誤差進行修正。該技術目前的商用得也比較成熟,在掃地機器人中得到廣泛應用。
7.超寬帶(UWB)定位技術
超寬帶技術是近年來新興一項全新的、與傳統通信技術有極大差異的通信無線新技術。它不需要使用傳統通信體制中的載波,而是通過發送和接收具有納秒或微秒級以下的極窄脈沖來傳輸數據,從而具有3.1~10.6GHz量級的帶寬。目前,包括美國,日本,加拿大等在內的國家都在研究這項技術,在無線室內定位領域具有良好的前景。
UWB技術是一種傳輸速率高,發射功率較低,穿透能力較強并且是基于極窄脈沖的無線技術,無載波。正是這些優點,使它在室內定位領域得到了較為精確的結果。
超寬帶(UWB)定位技術利用事先布置好的已知位置的錨節點和橋節點,與新加入的盲節點進行通訊,并利用三角定位或者“指紋”定位方式來確定位置。
超寬帶可用于室內精確定位,例如戰場士兵的位置發現、機器人運動跟蹤等。超寬帶系統與傳統的窄帶系統相比,具有穿透力強、功耗低、抗干擾效果好、安全性高、系統復雜度低、能提供精確定位精度等優點。因此,超寬帶技術可以應用于室內靜止或者移動物體以及人的定位跟蹤與導航,且能提供十分精確的定位精度。根據不同公司使用的技術手段或算法不同,精度可保持在0.1 m~0.5 m。
8.LED可見光技術
可見光是一個新興領域,通過對每個LED燈進行編碼,將ID調制在燈光上,燈會不斷發射自己的ID,通過利用手機的前置攝像頭來識別這些編碼。利用所獲取的識別信息在地圖數據庫中確定對應的位置信息,完成定位。
根據燈光到達的角度進一步細化定位的結果,高通公司做到了厘米級定位精度。由于不需要額外部署基礎設施,終端數量的擴大對性能沒有任何的影響,并且可以達到一個非常高的精度,該技術被高通公司所看好。
目前,可見光技術在北美有很多商場已經在部署。用戶下載應用后,到達商場里的某一個貨架,通過檢測貨架周圍的燈光即可知曉具體位置,商家在通過這樣的方法向消費者推動商品的折扣等信息。
9.地磁定位技術
地球可視為一個磁偶極,其中一極位在地理北極附近,另一極位在地理南極附近。地磁場包括基本磁場和變化磁場兩個部分。基本磁場是地磁場的主要部分,起源于地球內部,比較穩定,屬于靜磁場部分。變化磁場包括地磁場的各種短期變化,主要起源于地球內部,相對比較微弱。
現代建筑的鋼筋混凝土結構會在局部范圍內對地磁產生擾亂,指南針可能也會因此受到影響。原則上來說,非均勻的磁場環境會因其路徑不同產生不同的磁場觀測結果。而這種被稱為 IndoorAtlas的定位技術,正是利用地磁在室內的這種變化進行室內導航,并且導航精度已經可以達到 0.1 米到 2 米。
不過使用這種技術進行導航的過程還是稍顯麻煩。你需要先將室內樓層平面圖上傳到 IndoorAtlas 提供的地圖云中,然后你需要使用其移動客戶端實地記錄目標地點不同方位的地磁場。記錄的地磁數據都會被客戶端上傳至云端,這樣其它人才能利用已記錄過的地磁進行精確室內導航。
百度于2014年戰略投資了地磁定位技術開發商IndoorAtlas,并于2015年6月宣布在自己的地圖應用中使用其地磁定位技術,將該技術與Wi-Fi熱點地圖、慣性導航技術聯合使用。精度高, 宣傳商業應用中,可以達到米級定位標準,但磁信號容易受到環境中不斷變化的電、磁信號源干擾,定位結果不穩定,精度會受影響。
10.視覺定位
視覺定位系統可以分為兩類,一類是通過移動的傳感器(如攝像頭)采集圖像確定該傳感器的位置,另一類是固定位置的傳感器確定圖像中待測目標的位置。根據參考點選擇不同又可以分為參考三維建筑模型、圖像、預部署目標、投影目標、參考其他傳感器和無參考。
參考3D建筑模型和圖像分別是以已有建筑結構數據庫和預先標定圖像進行比對。而為了提高魯棒性,參考預部署目標使用布置好的特定圖像標志(如二維碼)作為參考點;投影目標則是在參考預部署目標的基礎上在室內環境投影參考點。參考其他傳感器則可以融合其他傳感器數據以提高精度、覆蓋范圍或魯棒性。
除了以上提及的,目前來看定位技術的種類有幾十甚至上百種,而每種定位技術都有自己的優缺點和適合的應用場景,沒有絕對的勝負之分。根據不用的需求因地制宜的部署解決方案,方為上策~