<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2020-10-12 14:02 原文鏈接: 從有源相控陣天線走向天線陣列微系統(三)

    3.3、天線陣列微系統與常規微系統之間關系

     

    微系統的概念隨著相關學科發展、技術推動 , 以及應用需求的牽引 , 其內涵也在不斷豐富和發展 . 早期 , 微系統 (microsystem) 概念在歐洲同行中使用 , 在美國被稱為 MEMS, 在日本被稱為微機械 (micromachine) 。

     

    1998 年 , 美國國防高級研究計劃局 (The Defense Advanced Research Projects Agency, DARPA) 微系統技術辦公室 (MTO) 從新的角度提出了微系統概念, 微系統是融合體系架構、算法、微電子、微光子、 MEMS 等要素 , 采用新的設計思想、設計方法和制造方法 , 將傳感、處理、執行、通信、能源等功能集成在一起 , 具有多種功能的微裝置 . DARPA 微系統概念超越了微機電系統 (MEMS) 的認識 ,為微系統多學科融合、微小尺度集成、軍事應用創新和電子信息系統小型化及性能提升提供了空間 ,推動了微系統集成方法和技術的進步 . 2017 年 , 美國 DARPA 微系統辦公室啟動電子復興計劃 (ERI),分別在材料與集成、電路設計和系統構架等三大支柱領域布局六大發展項目 。

     

    2007 年 , 歐盟在第 7 個科技框架計劃下 , 設立了 “ 微推進器、可實現宇宙探索用高效和精確控制的化學微推進器 ” 等多個微系統項目 . 2014 年 , 啟動了 “ 地平線 2020” 項目扶持微系統技術發展 . 日本依托其電子制造企業 , 在細分領域開展相關技術研究 , 索尼的圖像傳感器、東芝的 3D NAND 閃存都具有微系統產品的特征 。

     

    我國已經陸續開展微系統相關技術的預先研究 . 國發 (2015) 28 號《中國制造 2025 》 , 將微系統技術作為提升新一代信息技術產業自主發展的重要能力 . 國發 (2016) 43 號《 “ 十三五 ” 國家科技創新規劃》中明確將 “ 微納電子與系統集成技術 ” 作為新一代信息技術重點發展 。

     

    從當前國內外研究來看 , 微系統是以微納尺度理論為支撐 , 以微電子、光電子、 MEMS 等為基礎 ,結合體系架構和算法 , 運用微納系統集成技術和方法 , 將傳感、通信、處理、控制、微能源等功能單元 ,在微納尺度上采用異構、異質等方法集成在一起的微型系統 。

     

    天線陣列微系統與常規微系統共同之處是都具有微型化、集成化、智能化等特點 , 它們都區別于宏觀系統的關鍵特征就是采用微納尺度集成方式 , 尤其是三維異構混合集成 , 這不僅只是一個物理實現方式從平面式到立體式的變化 , 它們在體積重量大幅度縮小的同時 , 通過系統物理架構創新帶來了功能 / 性能上的大幅提升 , 甚至能夠實現宏觀系統無法實現的功能 . 天線陣列微系統和常規微系統有一定的區別 , 常規微系統希望三維尺寸都能夠縮減 , 使其達到最小體積和重量 , 而天線陣列微系統通過三維異構集成技術 , 使天線陣列孔徑尺寸不變的情況下 , 盡量減小天線的厚度和重量 . 為了滿足電子信息系統大功率孔徑積的需求 , 天線陣列微系統重點關注性能 ( 例如降低射頻損耗等 ) 提升和天線剖面厚度的降低 , 實現大孔徑陣列天線可折疊或者可共形 , 在體系架構和集成方式上有一定的特殊性 。

     

    未來電子信息系統 , 例如微波成像雷達 , 將劃分為兩個物理單元 , 一是數字計算機單元 , 也就是通用信號處理機 ; 二是天線陣列微系統 , 也就是由天線、收發組件、波束控制、電源、頻率綜合、接收機等傳統分系統組成的微系統 . 天線陣列微系統的評價可以用兩個因子來表述 , 效能因子 = 功率 × 孔徑 × 帶寬 ; 尺度因子 = 功耗 × 體積 × 重量 . 效能因子的提高和尺度因子的降低是度量天線陣列微系統性能的重要指標 。

     

    天線陣列微系統與傳統有源相控陣天線在科學理論、仿真分析和設計制造等方法有很大區別 , 兩者間的比較如表 2 所示 . 實現天線陣列微系統 , 需要解決兩個方面的瓶頸問題 , 一是無源和有源電路芯片化或小型化 ; 二是無源輻射天線單元 , 或者多個輻射天線單元組成小型天線子陣列 , 與多種無源 / 有源電路三維異構混合高密度集成 , 形成為一個獨立功能天線微系統封裝體 。

     

    表 2 天線陣列微系統與有源相控陣天線的比較

    9

     

    4、天線陣列微系統的若干前沿科學技術問題

    電磁現象和天線科學技術的進步是支撐經濟社會發展和保障國家安全的戰略性、基礎性和先導性技術 , 承載著軍事裝備系統發展變革、信息系統智能化小型化、微電子技術革命性創新的發展使命 .天線陣列微系統是有源陣列天線和微系統等科學技術的高度融合 , 面臨的主要科學技術挑戰如圖 7所示 。

     

    10

     

    圖 7 (網絡版彩圖) 天線陣列微系統面臨的科學技術挑戰

     

    4.1、多物理場約束下架構與拓撲技術

    天線陣列微系統的架構突破了微電子技術范疇 , 無法在功能、性能上分割成簡單單元 , 在力、光、材料、電子、信息等學科均有布局 , 實現了光、機、電、磁、聲等各系統要素間的緊密關聯 . 天線陣列微系統架構既有系統級的架構、性能、功能、算法等特征 , 又有元件級電、熱、材料參數特性 . 天線陣列微系統架構在多物理場約束下跨學科、跨專業 , 學科、功能和性能界面的模糊性和交叉性 , 給天線陣列微系統研究帶來很大困難 , 需要研究多物理場約束下架構與拓撲技術 , 重點是多物理場相互之間耦合機理、電磁特性模型 , 以及多維度參數容差分析與評價 。

     

    4.1.1、多物理場耦合機理

    大尺度天線與微小尺度芯片集成在同一封裝體內 , 存在著大尺度天線輻射的電磁場與不同小尺度芯片微觀的糾纏效應 ; 射頻信號與模擬、數字信號在封裝體內的串擾效應 ; 射頻信號在微觀尺度下的趨膚效應等 , 需要研究多物理場耦合機理 . 以多物理場耦合為切入點 , 分析微小尺度下的射頻集成、高密度異構、高精度變換、高速信號傳輸互連等的時域和頻率耦合機理 , 指導系統指標的分解與優化 , 為構建合理有效天線陣列微系統架構和拓撲提供科學保證 。

     

    通過提取天線陣列微系統架構中的光、機、電、磁、聲等多元參量特征 , 結合熱、流體、力學、電磁學等 , 開展多物理場在微小尺度下的耦合和互擾研究 , 以解決因多參量間的作用而相互約束問題 。

     

    圍繞射頻、模擬和數字等復雜信號在三維微小尺度下的傳輸特征 , 從天線陣列微系統的可靠性、可制造性 (design for manufacturing, DFM) 解析 , 并不斷迭代改進 , 重點解決天線陣列微系統的長期穩定性與可靠性 , 建立標準模型庫 , 同時梳理機電熱多物理場仿真標準流程 。

     

    4.1.2、異構體電磁特性模型

    在天線陣列微系統封裝體內 , 三維微小尺度互連產生電磁場不連續性 , 造成了電磁場互擾、有害模式寄生輻射 , 引起天線極化失配、工作頻帶內 / 外隔離特性的變化 . 為了獲得天線較好的工作帶寬、高效率和低交叉極化等性能 , 需要在特定邊界下 , 尤其是在寬帶寬掃描角條件下 , 研究天線口徑場模式匹配技術、陣列天線輻射單元之間的互耦特性 。

     

    在微小尺度下 , 通過開展異構體電磁特性的研究分析 , 建立天線陣列微系統中各功能單元的電磁分布模型 , 并將模型應用于復雜的系統設計中 , 構建系統的多端口特性模型 。

     

    通過分析內部復雜信號的傳導變換、空間輻射及阻抗匹配等問題 , 開展三維電磁場提參建模與時頻域分析 , 研究系統級功能單元、互連單元、封裝單元模型 , 得到信號在異構體內傳輸變換時 , 三維多變量函數和超高速信號電磁特性模型庫 , 構建等效模型 , 解決電磁干擾、串擾誤碼等關鍵問題 , 并在此基礎上優化天線陣列微系統中異質材料和功能異構體的分布 , 進一步得到電磁性能最優化的特性模型 。

     

    4.1.3、多維度匹配容差適應性

    大尺度情況下 , 微波傳輸線的不連續將產生高次模 , 高次模需要一定長度的傳輸線來衰減和消除 .在微小尺度下 , 微波芯片與傳輸線互連、傳輸線與傳輸線互連等 , 既有平面的 , 也有立體的 , 使微波傳輸線的不連續點的數量大幅度增加 , 本征模的特性發生了變化 , 傳輸線上的工作模式將是主模和寄生效應產生的高次模并存 . 因此需要研究邊界條件強約束下的激勵模式匹配理論 , 仿真分析微小尺度互連產生寄生效應 。

     

    針對微系統高密度封裝中機、電、熱等匹配帶來的功能和性能適應性問題 , 以及工藝制造精度對器件和系統的影響問題 , 開展異質異構體多維度匹配適應性的研究 , 在此基礎上形成天線陣列微系統異質異構體中 , 復雜信號傳輸和變換在多個維度 ( 包括機、電、熱等 ) 上的容差評價 。

     

    針對微系統多個維度上的參數偏差范圍和寄生參數變量 , 進一步分析功能電路受其影響的機理、環節和效應 . 著重分析由于天線陣列微系統剖面厚度減小帶來的功率密度加大 , 以及因熱而產生的機械精度的變化 , 這些物理量進而又影響性能和功能 . 在兼容工藝條件下 , 建立影響復雜信號品質、多物理場耦合的多維度函數 , 實現基于不同功能的有源電路 / 無源元件 / 封裝的系統集成 . 以此來指導微系統中三維異質異構體魯棒性設計 。

     

    4.2、微波集成電路技術

    天線陣列微系統中包括了大量微波有源集成電路 , 并向著數字化方向發展 . 對于天線陣列微系統來說 , 低剖面、高效率和輕量化是非常重要的 , 必須有一個強大的微波集成電路技術為后盾 。

     

    微波集成電路是指采用先進半導體工藝 , 以放大、變換、校準、比較和傳輸等手段處理微波 / 模擬信號的集成電路 . 隨著微波集成電路和數字化技術的發展 , 微波芯片的集成度越來越高 , 集成電路將多個單功能芯片集成在一塊芯片上 , 提高了芯片的性能并降低成本 . 微波單片可集成小信號接收鏈路和發射鏈路部分電路 , 接收鏈路包括低噪聲放大器、混頻、增益控制等 , 甚至包括高性能模擬 – 數字轉換器 (analog-to-digital converter, ADC) 等 , 發射鏈路包括信號產生、混頻、功率放大器等 . 不同的半導體材料具有不同的本征參數 , 有著不同的用途 . 幾種半導體材料特征參數如表 3 所示 . Si 通常用于數字 / 模擬控制或低波段功率芯片的基礎材料 , GaAs 常用于 Ka 波段以下微波射頻芯片基礎材料 .SiC, GaN 和金剛石 (diamond) 是第 3 代半導體材料 , 可以具有寬禁帶 (WBG) 特點 。

     

    表 3 幾種半導體材料特征參數

    11

    摩爾定律正逼近物理極限, 芯片性能提升的放緩和數據需求幾何級數式的增長之間矛盾將日益凸顯 , 5 nm 技術的推進中 , 面臨著來自晶體管的結構、掩模版的制造等方面的技術瓶頸 . 這也意味著 5 nm 技術節點的突破 , 將會使得集成電路技術發展面臨一系列的新技術挑戰 . 在 SoC 減少特征尺寸 ( 比例縮小 ) 已經越來越難 , 而且成本很高. 半導體集成電路重要的發展趨勢是新型微波、低功耗和智能控制等異質多功能集成電路 。

     

    4.2.1、第 3 代半導體集成電路技術

    在微波單片集成電路技術中 , 以氮化鎵 (GaN) 為代表的第 3 代半導體技術 , 因其寬禁帶特性 , 具有高功率密度、高功率附加效率、高增益、大帶寬和小尺寸 , 及較高的可靠性和工作溫度 , 已用于相控陣雷達 , 將會對天線陣列中的射頻前端產生革命性的影響 . 硅基 GaN 異質集成可以取得新的、以前無法實現的新的集成電路架構 , 以達到提高性能、提高可靠性 , 以及降低成本.第 3 代半導體集成電路技術的發展 , 將促進天線陣列微系統單通道發射功率和效率的提高 。


    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频