<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2020-10-26 10:28 原文鏈接: 深度解讀:到底什么是IGBT?(三)

      另外,這樣的結構好處是提高了電流驅動能力,但壞處是當器件關斷時,溝道很快關斷沒有了多子電流,可是Collector(Drain)端這邊還繼續有少子空穴注入,所以整個器件的電流需要慢慢才能關閉(拖尾電流, tailing current),影響了器件的關斷時間及工作頻率。這個可是開關器件的大忌啊,所以又引入了一個結構在P+與N-drift之間加入N+buffer層,這一層的作用就是讓器件在關斷的時候,從Collector端注入的空穴迅速在N+ buffer層就被復合掉提高關斷頻率,我們稱這種結構為PT-IGBT (Punch Through型),而原來沒有帶N+buffer的則為NPT-IGBT。

      一般情況下,NPT-IGBT比PT-IGBT的Vce(sat)高,主要因為NPT是正溫度系數(P+襯底較薄空穴注入較少),而PT是負溫度系數(由于P襯底較厚所以空穴注入較多而導致的三極管基區調制效應明顯),而Vce(sat)決定了開關損耗(switch loss),所以如果需要同樣的Vce(sat),則NPT必須要增加drift厚度,所以Ron就增大了。

      4、IGBT的制造工藝:

      IGBT的制程正面和標準BCD的LDMOS沒差,只是背面比較難搞:

      1) 背面減薄:一般要求6~8mil,這個厚度很難磨了,容易碎片。

      2) 背面注入:都磨到6~8mil了,還要打High current P+ implant>E14的dose,很容易碎片的,必須有專門的設備dedicate。甚至第四代有兩次Hi-current注入,更是挑戰極限了。

      3) 背面清洗:這個一般的SEZ就可以。

      4) 背面金屬化:這個只能用金屬蒸發工藝,Ti/Ni/Ag標準工藝。

      5) 背面Alloy:主要考慮wafer太薄了,容易翹曲碎片。

      5、IGBT的新技術:

      1) 場截止FS-IGBT:不管PT還是NPT結 構都不能最終滿足無限high power的要求,要做到high power,就必須要降低Vce(sat),也就是降低Ron。所以必須要降低N-drift厚度,可是這個N-drift厚度又受到截止狀態的電場約束(太薄了容易channel穿通)。所以如果要向降低drift厚度,必須要讓截止電場到溝道前提前降下來。所以需要在P+ injection layer與N-drift之間引入一個N+場截止層(Field Stop,FS),當IGBT處于關閉狀態,電場在截止層內迅速降低到0,達到終止的目的,所以我們就可以進一步降低N-drift厚度達到降低Ron和Vce了。而且這個結構和N+ buffer結構非常類似,所以它也有PT-IGBT的效果抑制關閉狀態下的tailing電流提高關閉速度。

      問題來了,這和PT-IGBT的N+ buffer差在哪里?其實之制作工藝不一樣。PT-IGBT是用兩層EPI做出來的,它是在P+襯底上長第一層~10um的N+buffer,然后再長第二層~100um的N-Drift。這個cost很高啊!而相比之下的FS-IGBT呢,是在NPT-IGBT的基礎上直接背面打入高濃度的N+截止層就好了,成本比較低,但是挑戰是更薄的厚度下如何實現不碎片。


    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频