具有芳香性原因
為什么4n+2個π電子平面單環共軛體系才具有芳香性呢?從分子軌道能級計算發現,當平面單環體系中的成鍵軌道數目為2 n+1時,如果有4n+2個π電子剛好能給滿成鍵軌道,從而具有類似惰性氣體的電子排布,而將具有最大的成鍵能而變得穩定,平面或接近平面, 電子的離域才有效;當環上的原子存在空間的排斥作用而破壞環的平面時,4n+2規則不適用。
在單環共軛多烯分子中,π電子數目符合4n+2規則具有芳香性的原因 ,可以這種體系的分子軌道能級圖得到答案。對于能量最高的反鍵軌道,在p軌道是單數時有兩個(簡并軌道);在p軌道是雙數時,只有一個。其它那些能量較高的成鍵軌道和反鍵軌道或/和非鍵軌道都是兩個(簡并的)。根據休克爾理論,當成鍵軌道充滿電子時,它們具有與惰性氣體相似的結構,因此體系趨向穩定,除能量最低的成鍵軌道需要2個電子充滿外,其它能量較高的兩個成鍵軌道或/和非鍵軌道需要4個電子才能充滿,即只有(4n+2)個π電子才能充滿這些軌道,使體系處于穩定,而具有芳香性 [2] 。
證明
休克爾4n+2規則可用微擾分子軌道理論即PMO法從理論上加以證明。
在休克爾規則的啟示下,近二十年合成了芳香體系的化合物,于是出現了一系列非苯芳烴,及一些不含苯環結構,但具有一定程度的芳香性的烴,稱為非苯芳烴。
1. 環丁烯基二價正離子 它環上的四個碳都是sp雜化的,π電子數等于2,符合休克爾4n+2(n=0)規則,有芳香性。
2. 環丁烯基雙負離子 它的π電子數等于6,環上的四個碳位于一個平面內,符合休克爾4n+2(n=1)規則,有芳香性。
3. 環辛三烯雙正離子 它的π電子數等于6,分子形狀是平面八邊行,符合休克爾4n+2(n=1)規則,有芳香性。
4. 環壬四烯負離子 它的π電子數等于10,環上碳原子近似于一個平面,符合休克爾4n+2(n=2規則,有芳香性。
5. 十二碳環六烯雙負離子 它是通過原來的六烯環狀物的還原性電解或與鉀金屬作用以獲得,π電子數等于14,符合休克爾4n+2(n=3)規則,有芳香性。
6. 十六碳環八烯雙負離子也已制得,π電子數等于18,符合理論判斷,它有芳香性。
7. 蘭烴(又名阿族啉)是少數共軛駢聯非苯烴,有芳香結構。此芳烴經X射線和電子衍射法測量它的鏈長大致相近而不相等,有較大的偶極距(1.08D),指出兩個環的電荷不等環庚三烯帶正電荷,環戊二烯帶負電荷,彼此由電荷的“去”和“得”,而得到穩定。
8.環戊二烯負離子當環戊二烯懸浮于苯中的金屬鈉或鎂作用時形成環戊二烯金屬化合物,它在液態氨中有明顯的導電性,證明了環戊二烯負離子的存在。環戊二烯負離子的π電子數目為兩個雙鍵上的四個和亞甲基上的兩個,形成環狀六個π電子體系,符合休克爾4n+2規則,現已證明它是一個平面的對稱體系。從分子軌道理論計算結果,環戊二烯負離子是一個滿電子構型體系,所以具有芳香性。
9.環辛四烯負離子 在環辛四烯的四氫呋喃溶液中加入金屬鉀,.環辛四烯變成二價負離子,分子形狀由環辛四烯的澡盆型結構轉變為平面八邊形,共有10個π電子,符合休克爾4n+2規則,因此它具有芳香性。
10.環丙烯基正離子它的環是由三個sp雜化的碳和2個π電子組成的共軛體系,π電子數為2,符合爾4n+2規則,它有芳香性。
11.薁(yu,音“欲”)它是一個五元環的環戊二烯和七元環的環庚三烯稠合而成的。π電子數為10,符合休克爾4n+2規則,因此它具有芳香性。
12. 環十八碳九烯—[18]輪烯它有十八個π電子,符合爾4n+2規則。。此芳烴經X射線證明,環中碳碳鍵長幾乎相等,整個分子幾乎處于一個平面上,扭轉不大于0.1nm。說明輪內氫原子的排斥力很弱,它也具有一定的芳香性。
13. 1,3,5—環庚三烯正離子 它的環中亞甲基的碳是sp雜化的,有空的p軌道,使平面的七個碳原子變成環狀共軛體系,π電子數為6,符合爾4n+2規則,它有芳香性。
同芳香性
此外,還有同芳香性,它是指某些共軛雙鍵的環被一個或兩個亞甲基所隔開,這個亞甲基在環平面之外,是環上的π電子構成芳香體系。如環壬三烯正離子有兩個亞甲基在環平面之外環平面的碳行成共軛體系,π電子數為6,符合爾4n+2規則,它有芳香性。