大致可分為三個階段,即羧化階段、還原階段和再生階段。
羧化階段
核酮糖-1,5-二磷酸(RuBP)在核酮糖二磷酸羧化酶/加氧酶(ribulose bisphosphate carboxylase/oxygenase,Rubisco)催化下,與CO2結合,產物很快水解為二分子3-磷酸甘油酸(3-PGA)反應過程。Rubisco是植物體內含量最豐富的酶,約占葉中可溶蛋白質總量的40%以上,由8個大亞基(約56KD)和8個小亞基(約14KD)構成,活性部位位于大亞基上。大亞基由葉綠體基因編碼,小亞基由核基因編碼。
還原階段
3-磷酸甘油酸在3-磷酸甘油酸激酶(PGAK)催化下,形成1,3-二磷酸甘油酸(DPGA),然后在甘油醛磷酸脫氫酶作用下被NADPH還原,變為甘油醛-3-磷酸(GAP),這就是CO2的還原階段。
羧化階段產生的PGA是一種有機酸,尚未達到糖的能級,為了把PGA轉化成糖,要消耗光反應中產生的同化力。ATP提供能量,NADPH提供還原力使PGA的羧基轉變成GAP的醛基,這也是光反應與暗反應的聯結點。當CO2被還原為GAP時,光合作用的貯能過程即告完成。
再生階段
是由GAP經過一系列的轉變,重新形成CO2受體RuBP的過程。這里包括了形成磷酸化的3-、4-、5-、6-、7-碳糖的一系列反應(見圖3-10)。最后一步由核酮糖-5-磷酸激酶(Ru5PK)催化,并消耗1分子ATP,再形成RuBP,構成了一個循環。C3途徑的總反應式為:
3CO2 + 5H2O + 9ATP + 6NADPH+6H+ →GAP + 9ADP + 8Pi + 6NADP+
出一個磷酸丙糖(GAP或DHAP)。磷酸丙糖可在葉綠體內形成淀粉或運出葉綠體,在細胞質中合成蔗糖。若按每同化1molCO2可貯能478kJ,每水解1molATP和氧化1molNADPH可分別釋放能量32kJ和217kJ計算,則通過卡爾文循環同化CO2的能量轉換效率為90%。(即478/(32×3+217×2)),由此可見,其能量轉換效率是非常高的。
由上式可見,每同化一個CO2,要消耗3個ATP和2個NADPH。還原3個CO2可輸出一個磷酸丙糖(GAP或DHAP)。磷酸丙糖可在葉綠體內形成淀粉或運出葉綠體,在細胞質中合成蔗糖。若按每同化1molCO2可貯能478kJ,每水解1molATP和氧化1molNADPH可分別釋放能量32kJ和217kJ計算,則通過卡爾文循環同化CO2的能量轉換效率為90%。(即478/(32×3+217×2),由可見,其能量轉換效率是非常高的。