<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2022-06-22 10:09 原文鏈接: 關于順磁共振的內容介紹

      具有未抵消的電子磁矩(自旋)的磁無序系統,在一定的恒定磁場和高頻磁場同時作用下產生的磁共振。若未抵消的電子磁矩來源于未滿充的內電子殼層(如鐵族原子的3d殼層、稀土族原子的4f殼層),則一般稱為(狹義的)順磁共振。若未抵消的電子磁矩來源于外層電子或共有化電子的未配對自旋[如半導體和金屬中的導電電子、有機物的自由基、晶體缺陷(如位錯)和輻照損傷(如色心)等]產生的未配對電子,則常稱為電子自旋共振。順磁共振是由順磁物質基態塞曼能級間的躍遷引起的,其靈敏度遠不如強磁體的磁共振高。如果在非順磁體(某些生物分子)中加入含有自由基的分子(稱為自旋標記),則也可在原來是抗磁性的物質中觀測到自旋標記的順磁共振。順磁共振技術已較廣泛地應用于各種含順磁性原子(離子)和含未配對電子自旋的固體研究。既可研究固體的基態能譜,又可研究固體中的相變、弛豫和缺陷等的動力學過程。微波固體量子放大器也是在固體順磁共振研究的基礎上發展起來的。

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频