在高等植物方面的染色體工程,目前還僅在六倍體普通小麥與其他種、屬之間做過。六倍體普通小麥的染色體組型是由野生一粒小麥AA、小斯卑特山羊草BB和匯山羊草DD三種類型的染色體組融合而成,是一種能正常繁殖的種間雜種(AABBDD),因此,很容易容納其他種、屬染色體添加或替代。這個領域的研究目的在于改良作物品種和探究物種起源。
1.染色體的消除①單體植物,起初是利用自然發生的單倍體普通小麥制作。現在則用人工誘導花粉或未受精的子房產生的單倍體植株為材料進行。這是因為普通小麥的單倍體植株只有21條染色體,都不是成對的,因此在成熟分裂(見減數分裂)時沒有聯會的對象,故仍為單價染色體。這21個單價染色體能排列在赤道板上縱裂為二,在后期Ⅰ被平均分配到細胞的兩極。但在第二次分裂時,這21個染色體不再縱裂,隨機分開,結果產生了染色體數從0~21個的 21種類型的配子。這些配子只有具19條或20條染色體的有受精能力。因此,如果用正常植株的花 植物的染色體工程與育種
粉(n=21)給單倍體植株授粉,n=20的卵細胞以一定的比例受精,結果得到2n=41的植株。其染色體組型中有20條染色體因有同源(對應)染色體故可以配對形成二價染色體。而只有一條染色體沒有配對,成為單價染色體,因此稱這種類型的植物叫單體植物。例如,美國米蘇里大學的E.R.西爾斯于1937~1954年共用了十七年的時間,用中國春小麥中發現的兩個單倍體植物與正常花粉授粉,得到的后代中找到了 5種單體植物。其后用同樣方法制作一套21種單體植物。除普通小麥外,煙草和硬粒小麥也制成了一套單體植物。②缺對植物,單體植物的體細胞染色體數為2n=41。在成熟分裂后,將形成兩種配子,即n=21,n=20,這兩種雌雄配子都有受精能力,而且自花授粉后也容易結實。不過兩者受精率的高低有差別。因此,受精時,兩種配子按一定比例進行結合。結果見表1。如果缺失型的花粉與缺失型的卵細胞結合為受精卵,由此發育成的植物,將比通常的普通小麥少一對染色體,所以叫缺對植物。E.R.西爾斯用此方法也培育出了一套普通小麥缺對植物。
2.染色體的添加①同種染色體的添加,所添加的染色體來自同種個體,添加一個的叫三體植物(2n+1);添加一對的叫四體植物(2n+2)。三體植物和單體植物一樣,可得自單倍體三倍體或缺體。它的來源很多。如普通小麥單體植物在成熟分裂時,有時會出現不分離現象(即單價染色體的二個姊妹染色單體在后期Ⅰ被同時拉到同一極,而不是各自分配到兩極)。結果所形成的四分孢子,其中三個的染色體數是n=20,一個是n=22。如果多一個染色體的配子與正常花粉或卵細胞 (n=21)受精后,就成為三體植物(2n=43),比原來正常普通小麥多了一個染色體。三體植物自花授粉的后代中就有四體植物出現。因為三體植物在成熟分裂時形成兩種配子(n=21,n=22)。如果讓三體植物自花授粉,就會出現三種類型的子代,如表2所示。其中就有新型的四體植物,比正常植物多兩條染色體。②異種染色體的添加,所添加的染色體來自別種植物。以普通小麥(W)和黑麥(R)2n=14雜交為例(圖1)。由于黑麥染色體不能和普通小麥配對,在成熟分裂染色體重組時,黑麥基因不能直接轉移到小麥染色體上,而只能將黑麥整個染色體組加到小麥的染色體組中,所得子一代雜種為多倍單倍體(21′W7′R),僅28個染色體。經過秋水仙素處理加倍后,成為小黑麥八倍體(21″W7″R)共有56個染色體,再與小麥回交得到七倍體(21″W7′R),共49個染色體。然后與小麥再回交一次,就可得到外加的單體植物。單體植物自交后得二體植物(44個染色體21″W1″R)。另外,還有一個外加系是加入了黑麥第Ⅱ對染色體,成為44個染色體的二體植物。這種外加系能使小麥抗銹(見染色體倍性)。
3.染色體的替代用同種或異種染色體來替代某特定染色體的技術。其目的是要把已知道的具有抗病或其他有利特性的某一染色體來替代另一個具有其他性狀的染色體,以改良作物品種。染色體替代有三種方法:①用普通小麥自身的染色體來替代。例如,普通小麥的一對1A染色體被一對1B染色體替代后,就能育成缺對1A、四體 1B植物,即缺對-四體植物。這種類型的植物是由缺對1A與四體1B雜交后所得子一代再自花授粉后選育而成。②普通小麥的一個品種的染色體用別的品種的染色體來替代,叫做同種染色體替代。如果用正常普通小麥B品種的花粉,與缺對的A品種雜交,所得子一代自花授粉,則在子二代就能選育出A品種的缺對的二條染色體被B品種染色體替代的植物。③用異種植物的染色體來替代,叫異種染色體替代。例如,普通小麥的2A染色體可用黑麥的2R染色體替代。為了達到這個目的,首先要育成基本材料缺對植物(2n=42-2A)和異種染色體外加系(2n=42+2R)。這樣就可把普通小麥缺對2A與小麥2R染色體外加系(具有21對小麥染色體加上一對黑麥2R染色體)雜交,子一代雜種染色體2n=42,其中20對染色體是除2A外的全部普通小麥染色體,其余二個一價染色體是2A和2R,成熟分裂時可產生四種類型配子,即:n=20+2A+2R,n=20+0,n=20+2A=21,n=20+2R=21。這最后一種是具有除2A以外的20個普通小麥染色體一個黑麥的2R染色體。因此,子一代雜種自花授粉的后代中,就能得到所期望的異種染色體替代植物。即一對黑麥的2R替代了一對小麥的2A(20″W2″R)。
現在,應用染色體工程的方法,在許多添加和替代染色體工作中,已經獲得了不少有遺傳學和育種學價值的品系。例如,獲得了添加單個冰草染色體的小麥品系中間,有的能抗粉露菌病、稈銹和葉銹。這種抗性均呈現顯性單因子遺傳。將黑麥第Ⅲ對染色體加到軟粒小麥對粉露菌病有抗性。用冰草的一個染色體替代軟粒小麥染色體3D,使軟粒小麥對稈銹有抗性。這些在生產實踐上都有實用價值。