通過人造材料,進行與自然界光合作用相似的化學反應,利用陽光、二氧化碳和水生成人類所需物質,是長期以來的夢想。然而,這種人工光合成體系進行應用嘗試時,面臨挑戰,關鍵在于如何利用太陽光中低能量的光子。紅外光是太陽光譜中典型的低能光子,在太陽光譜中占比達53%。通常的半導體光催化技術只能利用紫外區和可見區的光子來驅動化學轉化,制約了太陽能利用效率。近年來,國際上的等離激元催化研究團隊提出利用金屬納米材料的等離激元效應來驅動催化反應的思路,以期解決半導體光催化的瓶頸。等離激元金屬納米材料具有吸收低能光子的能力,卻難以將吸收的能量有效地利用到催化反應中,導致化學轉化活性很低。中國科學技術大學教授熊宇杰研究團隊針對等離激元催化的機制問題,開展了近十年的研究(Angew. Chem. Int. Ed.2014, 53, 3205;Angew. Chem. Int. Ed.2015, 54, 2425;J. Am. Chem. Soc. 2016, 138, 6822;J. Am. Chem. Soc. 2019, 141, 7807;Adv. Mater. 2022, 34, 2202367)。近日,熊宇杰/龍冉研究團隊設計了一類等離激元催化材料,發現其獨特的界面耦合態直接電子激發機制,實現了可見光區和紅外光區二氧化碳與水的高選擇性轉化。該技術使用廣譜低強度光,甲烷產率達0.55 mmol/g/h,碳氫化合物的產物選擇性達100%,是目前光驅動二氧化碳資源化利用的最高紀錄。相關研究成果發表在《自然-通訊》(Nat. Commun. 2023, 14, 221)。
該團隊聚焦二氧化碳與水的轉化反應,基于等離激元材料的催化活性位點設計,形成金屬與二氧化碳分子的有效雜化耦合體系。研究通過一系列工況條件下的譜學表征,發現在等離激元的局域電場增強效應下,其費米能級之上會出現準離散的陷阱態,有助于發生熱電子的直接激發過程,并通過延長熱電子壽命而發生二次激發過程,從而實現高效多光子吸收和選擇性能量轉移。基于該作用機制,所設計的材料在可見光區和紅外光區范圍內,皆可驅動二氧化碳與水高選擇性轉化為碳氫化合物。鑒于等離激元催化的多光子吸收特點,該團隊設計優化了反應裝置,實現了散射光子的高效吸收,從而突破了當前光驅動二氧化碳資源化利用領域的瓶頸。
研究工作得到國家重點研發計劃、國家自然科學基金國家杰出青年科學基金項目/優秀青年科學基金項目、中科院戰略性先導科技專項(B類)等的支持。天津大學、安徽師范大學、合肥光源等的課題組參與研究。
還記得那個橫空出世即一路“狂飆”的ChatGPT嗎?2023年以來,人工智能(AI)“百模大戰”從硝煙燃起到全面打響,讓人應接不暇。而AI模型背后的關鍵技術,正是機器學習。10月8日,瑞典皇家科學院宣......
回憶起和弟弟陳天石——如今的中科寒武紀科技股份有限公司(以下簡稱寒武紀公司)董事長兼總經理一起鉆研深度學習處理器芯片的歲月,中國科學院計算技術研究所(以下簡稱計算所)副所長、處理器芯片全國重點實驗室主......
為便于供應商及時了解政府采購信息,根據《財政部關于開展政府采購意向公開工作的通知》(財庫〔2020〕10號)等有關規定,現將安徽省生態環境監測中心(安徽省重污染天氣預報預警中心)2024年7月采購意向......
來自美國俄勒岡州立大學工程學院和Adobe公司的科學家攜手,開發出一種用于訓練人工智能(AI)的新技術FairDeDup。該技術不僅能降低訓練成本,而且有望減少AI系統的社會偏見。研究團隊已經在近期于......
6月6日,中國科學院上海藥物研究所研究員李鐵海課題組通過整合化學合成與酶促合成方法,實現了65個磺酸化和非磺酸化神經節苷脂寡糖所組成糖庫的有效合成,并采用高通量的糖芯片技術解析了該寡糖庫與多種疾病相關......
西安交通大學藥學院魏曉峰教授團隊利用易得的有機鹵化物及硒粉為起始原料,鎂作為活化試劑,通過機械化學方法實現高活性有機硒格式試劑的原位制備并率先在國際上通過近邊X射線吸收精細結構譜(NEXAFS)對反應......
由于有機物絕大部分在中紅外區(波長為4000~400cm-1)都有明顯吸收峰,因此紅外光譜是鑒別有機物的常用方法之一。在藥企中,通常應用紅外光譜法進行定性分析,采用已知標準樣品對照法,即在完全相同的條......
家庭常用的烤箱以電為能源,電作為二次能源,必須通過煤炭、石油、天然氣等一次能源的消耗才能得到。有沒有一種可能,將天然氣在不燃燒的情況下轉化為熱能,直接讓烤箱不通電也能烘制美食?日前,江蘇大學食品物理加......
人工智能正在逐漸深入我們的生活,成為服務員、醫療助手、司機……為我們帶來諸多便利。但很少有人思考,人工智能的“判斷”有這么可靠嗎?如果人工智能得到的結果出現了沖突,我們該如何應對?“就像患者去醫院,血......
酚醛樹脂是人類歷史上第一種人工合成塑料,自誕生以來已經歷了一個世紀。20世紀以來,盡管高性能工程塑料的持續涌現加速了酚醛樹脂的替代,但因具有機械性能、電絕緣性、防火性和化學穩定性等方面的優勢,酚醛樹脂......