<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2014-03-28 13:30 原文鏈接: 美國實驗室揭示石墨烯插層材料超導機制

      美國能源部國家直線加速器實驗室(SLAC)和斯坦福大學的一項研究首次揭示了石墨烯插層復合材料的超導機制,并發現一種潛在的工藝能使石墨烯這個具有廣闊應用前景的“材料之王”獲得人們夢寐以求的超導性能。該研究有助于推動石墨烯在超導領域的應用,開發出高速晶體管、納米傳感器和量子計算設備。

      石墨烯是一種呈蜂巢狀排列的單層碳原子結構,是目前已知的最薄、強度最高的物質,具有優良的物理化學性能。科學家希望用石墨烯制成高速晶體管、傳感器乃至透明電極。此前,人們就已知道摻雜金屬原子的石墨烯插層材料具有二維超導性能。但科學家們一直無法確定超導性是來源于金屬、石墨烯還是兩者兼而有之。新研究首次通過令人信服的證據,證明了是石墨烯在其中起到了關鍵作用。為相關材料在納米級電子器件領域的應用鋪平了道路。

      物理學家組織網3月21日的報道中稱,研究人員是通過強紫外線對一種名為鈣插層石墨烯(CaC6)的材料進行研究后得出上述結論的。CaC6是純鈣晶體與石墨發生化學反應所得到的石墨烯插層復合材料,由單層碳原子石墨烯和單層原子鈣交替復合而成。

      研究人員將一份來自英國倫敦大學學院(UCL)的CaC6樣品在斯坦福同步輻射光源實驗室(SSRL)進行了分析。高強度的紫外線能夠幫助他們深入到材料內部進行觀察,分清每層內的電子是如何運動的。實驗顯示,電子在石墨烯和鈣原子層之間來回散射,與材料的原子結構發生自然振動并發生配對,從而獲得了無電阻的導電性。

      領導此項研究的斯坦福材料和能源科學研究所(SIMES)研究生楊碩龍(音譯)說:“我們的工作開辟了一條讓石墨烯實現超導的途徑,這是科學界夢想了很久卻一直未能實現的目標。借助同步輻射光源我們第一次揭示了石墨烯插層材料的超導機制。”

      他說,雖然超導石墨烯的應用在短期內還難以實現,但其潛在的應用價值已經不可限量,包括超高頻率模擬晶體管、納米傳感器及電子器件以及量子計算機在內的眾多設備都有望因此成為現實。

    相關文章

    中美團隊制成世界首個功能性石墨烯半導體

    天津大學教授馬雷聯合美國佐治亞理工學院WalterdeHeer團隊,首次制成了可擴展的半導體石墨烯,這可能為制造比現在的硅芯片速度更快、效率更高的新型計算機鋪平道路。石墨烯是一種由單層碳原子制成的材料......

    打開石墨烯帶隙,開啟石墨烯芯片制造領域大門

    天津大學納米顆粒與納米系統國際研究中心的馬雷教授團隊攻克了長期以來阻礙石墨烯電子學發展的關鍵技術難題,在保證石墨烯優良特性的前提下,打開了石墨烯帶隙,成為開啟石墨烯芯片制造領域大門的重要里程碑。該研究......

    十倍于硅的性能?石墨烯半導體厲害在哪

    近日,我國研究團隊創造了世界上第一個由石墨烯制成的功能半導體,相關論文發表在權威期刊Nature雜志上。論文名為“Ultrahigh-mobilitysemiconductingepitaxialgr......

    石墨烯真能造芯片了?天津大學納米中心攻破技術難關

    “后摩爾時代,放過石墨烯(Graphene)吧。”這是兩年前中國科學院院士、北京石墨烯研究院院長劉忠范說過的話。石墨烯,一個“新材料之王”,一個曾經在2021年在“全球IEEE(電氣和電子工程師協會)......

    首個由石墨烯制成的功能半導體問世

    美國佐治亞理工學院研究人員創造了世界上第一個由石墨烯制成的功能半導體。該項突破為開發全新電子產品打開了大門。研究發表在《自然》雜志上。石墨烯和碳化硅的分子模型。圖片來源:佐治亞理工學院石墨烯是由已知最......

    愛丁堡大學:合成硬度媲美金剛石的新材料

    金剛石是天然礦物中硬度最高的物質,可用作研磨劑或鉆頭涂層。英國愛丁堡大學近日發布新聞公報說,該校研究人員參與的團隊合成了硬度可以與金剛石相媲美的氮化碳化合物,有潛力成為具有廣泛工業用途的多功能材料。2......

    回顧:2023年Nature\Science上的鋰電池成果

    2023年Nature上的電池文章匯總1.固態電解質最新成果登上Science日本東京工業大學創新研究所全固態電池研究中心RyojiKanno教授團隊利用高熵材料的特性,通過增加已知鋰超離子導體的組成......

    2023達摩院青橙獎獲得者楊宗銀,如何研制出的世界最小光譜儀

    “肉眼所見的世界,并非真實的世界,只是紅綠藍三色在我們腦海中的投影。”1666年,牛頓發現太陽光通過棱鏡的折射后可觀察到更多光譜色,這個實驗推動了光譜儀的誕生。憑借光譜儀這一工具,人類掌握一種新的精確......

    大規格吉瓦級項目投建鈣鈦礦技術商業化進程再提速

    鈣鈦礦技術的商業化進程繼續提速。12月28日,記者從協鑫集團獲悉,其旗下昆山協鑫光電材料有限公司(以下簡稱“協鑫光電”)總投資50億元的2吉瓦鈣鈦礦生產線已于12月27日開工建設。據悉,該項目為全球首......

    省重點實驗室,精準“狙擊”讓癌細胞無處遁形

    設計系列納米酶,與光熱治療、光動力治療、免疫治療等結合,用于癌癥、老年病等重大疾病的治療;突破太陽能電池關鍵技術瓶頸,構建高能、低成本、高效率的全新有機太陽能電池體系,將有機太陽能電池效率快速提升至1......

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频