<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2023-05-05 11:19 原文鏈接: 納米級變化揭示提高固態電池性能的線索

      包括來自加州大學圣地亞哥分校的納米工程師的一個全球性的科學家團隊已經發現了固態電池內的納米級變化,這可以為提高電池效率提供新的見解。通過利用計算機模擬和X射線實驗,研究人員能夠詳細地"看到"為什么鋰離子在固體電解質中移動速度緩慢,特別是在電解質和電極之間的界面。

      研究表明,與材料的其他部分相比,接口處的振動增加更多的阻礙了鋰離子的移動。這些發現于4月27日發表在《自然-材料》上,可能會導致開發新的方法來改善固態電池的離子傳導性。

      固態電池包含由固體材料制成的電解質,它有希望比使用易燃液體電解質的傳統鋰離子電池更安全、更持久、更高效。

      但是這些電池的一個主要問題是,鋰離子的運動受到更多限制,特別是在電解質與電極接觸的地方。

      "我們制造更好的固態電池的能力受到了阻礙,因為我們不知道在這兩種固體之間的界面上到底發生了什么,這項工作為觀察這類界面提供了一個新的顯微鏡。通過看到鋰離子在做什么,了解它們如何在電池中移動,我們可以開始設計方法,讓它們更有效地來回移動。"該研究的共同第一作者托德-帕斯卡爾說,他是納米工程和化學工程教授,也是加州大學圣地亞哥雅各布斯工程學院可持續動力和能源中心的成員。

      在這項研究中,帕斯卡爾與他的長期合作者、加州大學伯克利分校化學教授Michael Zuerch合作,開發了一種直接探測界面上鋰離子的技術。在過去的三年里,這兩個小組一直致力于開發一種全新的光譜方法,用于探測埋藏的功能性界面,如電池中存在的界面。帕斯卡爾的實驗室領導了理論工作,而祖爾奇的實驗室領導了實驗工作。

      他們開發的新技術結合了兩種既定的方法。第一種是X射線吸附光譜學,它涉及到用X射線束擊中一種材料以確定其原子結構。這種方法對于探測材料內部深處的鋰離子很有用,但在界面上卻沒有。因此,研究人員使用了第二種方法,稱為二次諧波生成,它可以專門識別界面上的原子。它涉及到用兩個連續的高能粒子脈沖擊中原子--在這種情況下,是特定能量的高強度X射線束,這樣電子就能達到一個高能狀態,稱為雙激發態。這種激發狀態不會持續很久,這意味著電子最終會回到它們的基態,并釋放出吸附的能量,隨后作為信號被檢測到。這里的關鍵是,只有某些原子,如界面上的原子可以進行這種雙重激發。因此,從這些實驗中檢測到的信號將必然而且只提供關于在界面上發生的事情的信息,帕斯卡爾解釋說。

      研究人員在一個模型固態電池上使用了這種技術,該電池由兩種常用的電池材料組成:作為固體電解質的鑭系鈦酸鋰和作為陰極的氧化鈷鋰。

      為了驗證他們看到的信號確實來自于界面,研究人員根據帕斯卡爾研究小組開發的方法進行了一系列的計算機模擬。當研究人員比較實驗和計算數據時,他們發現這些信號幾乎完全匹配。

      研究報告的共同第一作者薩薩瓦-賈姆努奇說:"理論工作使我們能夠填補空白,并使我們在實驗中看到的信號更加清晰,但是該理論的一個更大的優勢是我們可以用它來回答更多的問題。例如,為什么這些信號會以這樣的方式出現?"他是帕斯卡爾研究小組的一名納米工程博士生,最近通過了博士論文答辯。

      Jamnuch和Pascal將這項工作向前推進了一步。他們對固體電解質中的鋰離子的動態進行建模,并發現了一些意想不到的東西。他們發現,高頻振動發生在電解質界面,與材料其他部分的振動相比,這些振動進一步限制了鋰離子的移動。

      "這是這項研究的主要發現之一,我們能夠用理論來提取,"Jamnuch說。電池研究人員長期以來一直懷疑固體電解質和電極材料之間的不相容性限制了鋰離子在界面的移動。現在,Jamnuch、帕斯卡爾及其同事表明,還有其他東西在起作用。

      帕斯卡爾說:"實際上,在這種材料的界面上,對離子運動有一些內在的阻力。鋰離子通過的障礙不僅僅是兩種固體材料在機械上相互不兼容的功能,它也是材料本身振動的功能。"

      他將離子運動的障礙描述為類似于一個球在一個墻壁也在移動的房間內彈跳時的經歷。

      他說:"想象一下,一個房間的后面有一個球,而這個球正試圖向前面移動,現在還可以想象,房間的兩側也在移動,來回移動,這導致球從一側反彈到另一側。總的能量是守恒的,所以如果球從側面反彈得更多,那么它從后面到前面的運動就會更少。換句話說,兩側的運動速度越快,球花在反彈上的時間就越多,到前面的時間就越長。同樣,在這些固態電池中,鋰離子穿過材料的路徑受到材料本身在界面上的振動頻率比在體積上的振動頻率高的影響。因此,即使電解質和電極材料之間有完美的兼容性,由于這些高頻振動,鋰擴散通過界面仍然會有阻力。"

      這一計算工作讓研究人員為未來的固態電池設計奠定了基礎。"一個想法是減緩固體電解質材料界面的振動,"Jamnuch說。"比如說,可以通過在界面上摻入重元素來做到這一點。現在我們對鋰離子如何通過這個系統有了更多的了解,我們可以合理地設計新的系統,使離子更容易通過,我們發現了可以轉動的新旋鈕,優化這些系統的新方法。"

    相關文章

    中國新能源車熱銷!日媒:中國汽車挑戰日系車核心市場

    隨著中國新能源(4.540,0.11,2.48%)車企競爭力不斷增強,日媒關注到中國新能源汽車旋風正強勢刮進日本車企的傳統海外市場,特別是泰國和澳大利亞兩大市場。5月份,泰國和澳大利亞的電動汽車銷量均......

    豐田宣布固態電池技術獲重大突破

    據財聯社7月5日報道,周二豐田公司宣布,已經簡化了制造固態電池所用材料的生產過程,并稱這一發現是一個重大的飛躍,能夠大幅縮短汽車充電時間和增加續航里程。豐田公司碳中和研發中心的總裁海田敬二表示:“無論......

    科研人員開發鄰域納米結構生物傳感膜

    葡萄糖檢測和實時連續監測對于糖尿病等疾病的診斷和預防,以及制糖和發酵過程中的可控生產至關重要。在這一過程中,以葡萄糖氧化酶、普魯士藍、電極為核心的葡萄糖生物傳感設備極具前景。近日,中國科學院過程工程所......

    納米異質結構催化性能調控及應用研究獲進展

    近日,中國科學院國家納米科學中心楊蓉課題組在納米異質結構催化性能調控及其應用方面取得進展。相關研究成果以SynergisticDegradationofTetracyclinefromMo2C/MoO......

    PNAS:新型RNA納米顆粒療法或能阻斷人類多發骨髓瘤擴散

    多發性骨髓瘤是一種無法治愈的骨髓癌癥,其每年會引發超過10萬人發生死亡,這種疾病以其快速和致命的擴散而聞名,其是目前科學家們所面臨的最具挑戰性的疾病之一;當癌細胞在機體不同的部位發生移動時,其就會發生......

    用細菌制造出高性能絕緣納米紙

    中國科學技術大學俞書宏院士團隊研制出了一種高性能纖維素基納米紙材料,其在極端條件下仍可保持優異的機械和電絕緣性能。相關成果日前發表于《先進材料》。復合納米紙的的制備與結構示意圖中國科大供圖隨著人類對南......

    紫杉類藥物納米遞送系統有望用于多種實體腫瘤治療

    5月22日,從西安交通大學獲悉,該校第二附屬醫院康華峰教授、馬小斌副教授團隊,醫學部基礎醫學院吳昊研究員團隊和加州大學戴維斯分校李源培教授團隊聯合開發了一種新型紫杉類藥物納米遞送系統,在卵巢癌模型中顯......

    納米輪子:用于先進技術的具有獨特性能的金屬團塊

    雖然輪子不需要重新發明,但根據一個設在中國的多機構研究小組的研究,開發新的納米輪子卻有額外的好處。該研究小組制造了一個新的金屬化合物系列,其中每一種都表現出下一代技術所需的獨特特性,如先進的傳感器。一......

    理化學研究所在硅量子點壽命研究上獲得突破

    日本理化學研究所的物理學家開發了一個優化半導體納米設備的理論模型,證明了精心設計的量子點可以創造出抗電噪聲的強大的硅空旋量子比特。這項研究對于理解去噪和設計大規模量子計算機至關重要。理化學研究所三位物......

    脂質體納米藥物用于乳腺癌的光動力/免疫聯合治療

    近日,中山大學附屬第三醫院納米醫學中心帥心濤教授團隊聯合超聲科任杰教授團隊,在生物材料著名期刊Small發表題為“NanodrugInducingAutophagyInhibitionandMitoc......

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频