<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 色譜分析技術(高壓液相色譜、親和色譜法和吸附色譜法)



    高壓液相色譜
    Martin 和 Synge在1941年就提出高效相色譜的設想,然而直到六十年代后期,由于各種技術的發展,高效液相色譜才付諸實現。這種色譜技術曾被稱為高速液相色譜(HighSpeed Liquid Chromatography),高壓液相色譜(High Parss-ure Lipuid Chromatography),目前使用最多的名稱是高效液相色譜(High Pe-rformance Liauid Chromatography,HPLC)。高效液相色譜已經廣泛地應用,成為一項不可缺少的技術。它的主要優點是⑴分辯率高于其它色譜法;⑵速度快,十幾分鐘到幾十分鐘可完成;⑶重復性高;⑷高效相色譜柱可反復使用;⑸自動化操作,分析精確度高。根據分離過程中溶質分子與固定相相互作用的差別,高效液相色譜可分為四個基本類型,即液-固色譜、液-液色譜、離子交換色譜和體積排阻色譜。高效液相色譜在生物領域中廣泛用于下列產物的分離和鑒定:⑴氨基酸及其衍生物;⑵有機酸;⑶甾體化合物;⑷生物鹼;⑸抗菌素;⑹糖類;⑺卟啉;⑻核酸及其降解產物;⑼蛋白質、酶和多肽;⑽脂類等。
    一、分類
    高效液相色譜法可分為四個基本類型:即液-固色譜法,鍵合相色譜法,離子交換色譜法及體積排阻色譜法。
    (一)液-固色譜法
    液-固色譜法通常稱吸附色譜法,吸附劑有活性碳,氧化鋁和硅膠,在液-固色譜法中用的載體都是硅膠。硅膠對溶質,分子的吸附能力不是平均分布在整個硅脫表面的,在硅膠表面有一些區域與溶質分子強烈相互作用,這些區域為活性位置,硅膠與溶質分子間主要作用是偶極距力氫鍵及靜電相互作用。極性越強,而化合物在硅膠柱上的滯留時間也長。在液-固色譜中,依靠流動相溶劑分子與溶質分子競爭固定相互活性位置, 從而使溶質從色譜柱上洗脫下來。與硅膠表面活性位置結合力強的溶劑洗脫溶質分子的能力強,因而稱強溶劑,反之為弱溶劑。液─固色譜法的特點是適于分離色譜幾何異構體,可用于脂溶性化合物質如磷脂,甾體化合物,脂溶性維生素,前列腺素等。
    (二)鍵合相色譜法
    鍵合相色譜法是由液-液色譜法即分配色譜發展起來的。鍵合相色譜法將固定相共價結合在載體顆粒上,克服了分配色譜中由于固定相在流動中有微量溶解,及流動相通過色譜柱時的機械沖擊,固定相不斷損失,色譜柱的性質逐漸改變等缺點。鍵合相色譜法可分為正常相色譜法和反相色譜法。
    1.正常相色譜法
    在正常相色譜法中共價結合到載體上的基團都是極性基團,如一級氨基、氰基、二醇基、二甲氨基和二氨基等。流動相溶劑是與吸附色譜中的流動相很相似的非極性溶劑,如庚烷、已烷及異辛烷等。由于固定相是極性,因此流動溶劑的極性越強,洗脫能力也越強,即極性大的溶劑是強溶劑。固定相與流動相的這種關系正好與液-固色譜法相同,稱這種色譜法為正常相色譜法。盡管如此,正常相色譜法的分離原理主要根據化合物在固定相及流動相中分配系數的不同進行分離,它不適于分離幾何異構體。
    2.反相色譜法
    在反相色譜法中共價結合到載體上的固定相是一些直鏈碳氫化合物,如正辛基等。流動相的極性比固定相的極性強。反相色譜法在高效液相色譜法中應用最廣泛。 在反相色譜法中,使溶質滯留的主要作用是疏水作用,在高效液相色譜中又被稱為疏溶劑作用。所謂疏水作用即當水中存在非極性溶質時,溶質分子之間的相互作用 、溶質分子與水分子之間的相互作用遠小于水分子之間的相互作用, 因此溶質分子從水中被“擠”了出去。可見反相色譜中疏水性越強的化合物越容易從流動相中擠出去,在色譜柱中滯留時間也長,所以反相色譜法中不同的化合物根據它們的疏水特性得到分離。反相色譜法適于分離帶有不同疏水基團的化合物,亦即非極性基團的化合物。此外,反相色譜法可用于分離帶有不同極性基團的化合物。可以通過改變流動相的溶劑及其組成和pH,以影響溶質分子與流動相的相互作用,改變它們的滯留行為。另外,反相色譜中水的流動相中占的比例伸縮性很大,可以/從0-100%,從而使反相色譜可用于水溶性、脂溶性化合物的分離。反相色譜法中的固定相是被共價結合到硅膠載體上的直鏈飽和和烷烴,其鏈的長短不同,最長的是十八烷基,這也是使用得最多的固定相。直鏈飽和烷烴疏水特性隨著碳氫鏈的長度而增加,在反相色譜柱中溶質由于疏水作用而滯留的時間也將隨著碳氫鏈的長度而增加。在一般情況下這意味著用碳氫鏈長的反相色譜柱能得到較好的分辯率,在多數情況下是依靠反復來選擇色譜柱。由于反相色譜法的固定相是疏水的碳氫化合物,溶質與固定相之間的作用主要是非極性相互作用,或者說疏水相互作用,因此溶劑的強度隨著極性降低而增加。水是極性最強的溶劑,也是反相色譜中最弱的溶劑。在反相色譜中常常用和基礎溶劑,向其中加入不同濃度的、可以與水混溶的有機溶劑,以得到不同強度的流動相,這些有機溶劑稱為修飾劑。反相色譜中最常用的有機溶劑有甲醇和乙腈,此外,乙醇、四氫呋喃、異丙醇及二氧六環也常被用作修飾劑。
    在生化分析中,反相色譜的應用極廣。可用于①氨基酸和多肽的分析;②蛋白質的分離;③堿基,核酸和核酸酶的分析;④甾體化合物的分析;⑤以及其他如幾茶酚胺類,組胺,糖及維生素的分離。
    (三)離子交換色譜
    離子交換色譜中的固定相是一些帶電荷的基團, 這些帶電基團通過靜電相互作用與帶相反電荷的離子結合。如果流動相中存在其他帶相反電荷的離子,按照質量作用定律,這些離子將與結合在固定相上的反離子進行交換。固定相基團帶正電荷的時候,其可交換離子為陰離子,這種離子交換劑為陰離子交換劑;固定相的帶電基團帶負電荷,可用來與流動相交換的離子就是陽離子,這種離子交換劑叫做陽離子交換劑。陰離子交換柱的功能團主要是-NH2,及-MH3+ :陽離子交換劑的功能團主要是-SO3H及-COOH。其中-NH3+離子交換柱及-SO3H離子交換劑屬于強離子交換劑,它們在很廣泛的pH范圍內都有離子交換能力;-NH2及-COOH 離子交換柱屬于弱離子交換劑,只有在一定的pH值范圍內,才能有離子交換能力。離子交換色譜主要用于可電離化合物的分離,例如,氨基酸自動分析儀中的色譜柱,多肽的分離、蛋白質的分離,核苷酸、核苷和各種堿基的分離等。

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频