<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2020-06-24 10:20 原文鏈接: 氨基酸結構和分類(二)

    二、氨基酸的性質
    (一)物理性質
    α-氨基酸都是白色晶體,每種氨基酸都有特殊的結晶形狀,可以用來鑒別各種氨基酸。除胱氨酸和酪氨酸外,都能溶于水中。脯氨酸和羥脯氨酸還能溶于乙醇或乙MI中。
    除甘氨酸外,α-氨基酸都有旋光性,α-碳原子具有手性。蘇氨酸和異亮氨酸有兩個手性碳原子。從蛋白質水解得到的氨基酸都是L-型。但在生物體內特別是細菌中,D-氨基酸也存在,如細菌的細胞壁和某些抗菌素中都含有D-氨基酸。
    三個帶苯環的氨基酸有紫外吸收,F:257nm,ε=200; Y:275nm,ε=1400; 
    W:280nm,ε=5600。通常蛋白質的紫外吸收主要是后兩個氨基酸決定的,一般在280nm。
    氨基酸分子中既含有氨基又含有羧基,在水溶液中以偶極離子的形式存在。所以氨基酸晶體是離子晶體,熔點在200℃以上。氨基酸是兩性電解質,各個解離基的表觀解離常數按其酸性強度遞降的順序,分別以K1’、K2’來表示。當氨基酸分子所帶的凈電荷為零時的pH稱為氨基酸的等電點(pI)。等電點的值是它在等電點前后的兩個pK’值的算術平均值。
    氨基酸完全質子化時可看作多元弱酸,各解離基團的表觀解離常數按酸性減弱的順序,以pK1’ 、pK2’ 
    、pK3’表示。氨基酸可作為緩沖溶液,在pK’處的緩沖能力最強,pI處的緩沖能力最弱。
    氨基酸的滴定曲線如圖。
    (二)化學性質
    1.氨基的反應
    (1)酰化
    氨基可與酰化試劑,如酰氯或酸酐在堿性溶液中反應,生成酰胺。該反應在多肽合成中可用于保護氨基。
    (2)與亞硝酸作用
    氨基酸在室溫下與亞硝酸反應,脫氨,生成羥基羧酸和氮氣。因為伯胺都有這個反應,所以賴氨酸的側鏈氨基也能反應,但速度較慢。常用于蛋白質的化學修飾、水解程度測定及氨基酸的定量。
    (3)與醛反應
    氨基酸的α-氨基能與醛類物質反應,生成西佛堿-C=N-。西佛堿是氨基酸作為底物的某些酶促反應的中間物。賴氨酸的側鏈氨基也能反應。氨基還可以與甲醛反應,生成羥甲基化合物。由于氨基酸在溶液中以偶極離子形式存在,所以不能用酸堿滴定測定含量。與甲醛反應后,氨基酸不再是偶極離子,其滴定終點可用一般的酸堿指示劑指示,因而可以滴定,這叫甲醛滴定法,可用于測定氨基酸。
    (4)與異硫氰酸苯酯(PITC)反應
    α-氨基與PITC在弱堿性條件下形成相應的苯氨基硫甲酰衍生物(PTC-AA),后者在硝基甲烷中與酸作用發生環化,生成相應的苯乙內酰硫脲衍生物(PTH-AA)。這些衍生物是無色的,可用層析法加以分離鑒定。這個反應首先為Edman用來鑒定蛋白質的N-末端氨基酸,在蛋白質的氨基酸順序分析方面占有重要地位。
    (5)磺酰化
    氨基酸與5-(二甲胺基)萘-1-磺酰氯(DNS-Cl)反應,生成DNS-氨基酸。產物在酸性條件下(6NHCl)100℃也不破壞,因此可用于氨基酸末端分析。DNS-氨基酸有強熒光,激發波長在360nm左右,比較靈敏,可用于微量分析。
    (6)與DNFB反應
    氨基酸與2,4-二硝基氟苯(DNFB)在弱堿性溶液中作用生成二硝基苯基氨基酸(DNP氨基酸)。這一反應是定量轉變的,產物黃色,可經受酸性100℃高溫。該反應曾被英國的Sanger用來測定胰島素的氨基酸順序,也叫桑格爾試劑,現在應用于蛋白質N-末端測定。
    (7)轉氨反應
    在轉氨酶的催化下,氨基酸可脫去氨基,變成相應的酮酸。
    2.羧基的反應
    羧基可與堿作用生成鹽,其中重金屬鹽不溶于水。羧基可與醇生成酯,此反應常用于多肽合成中的羧基保護。某些酯有活化作用,可增加羧基活性,如對硝基苯酯。將氨基保護以后,可與二氯亞砜或五氯化磷作用生成酰氯,在多肽合成中用于活化羧基。在脫羧酶的催化下,可脫去羧基,形成伯胺。
    3茚三酮反應
    氨基酸與茚三酮在微酸性溶液中加熱,最后生成藍色物質。而脯氨酸生成黃色化合物。根據這個反應可通過二氧化碳測定氨基酸含量。
    4.側鏈的反應
    絲氨酸、蘇氨酸含羥基,能形成酯或苷。

    相關文章

    氨基酸代謝障礙類特醫食品注冊指南發布

    記者從市場監管總局獲悉,2月12日,市場監管總局發布《氨基酸代謝障礙類特殊醫學用途配方食品注冊指南》(以下簡稱《指南》),優化注冊管理要求,指導企業研發創新,提高注冊申報效率,推動提升罕見病類特醫食品......

    市場監管總局發布氨基酸代謝障礙類特醫食品注冊指南

    2月12日,市場監管總局發布《氨基酸代謝障礙類特殊醫學用途配方食品注冊指南》(以下簡稱《指南》),優化注冊管理要求,指導企業研發創新,提高注冊申報效率,推動提升罕見病類特醫食品可及性。氨基酸代謝障礙類......

    研究人員系統鑒定出哺乳動物生精細胞RNA結合蛋白

    南京醫科大學教授鄭科、郭雪江和副教授林明焰與中南大學教授、中信湘雅生殖與遺傳專科醫院副院長譚躍球等課題組合作,系統鑒定了哺乳動物生精細胞RNA結合蛋白、RNA結合結構域和非結構域元件,構建其男性不育相......

    新研究!揭示現代大豆品種重要性狀結構變異

    近日,《自然—遺傳學》(NatureGenetics)在線發表河北農業大學張彩英團隊研究論文。該研究率先組裝高產優質抗病現代品種“農大豆2號”高質量基因組,在基因組水平發掘現代大豆育成品種特有結構變異......

    Nature子刊:中山大學/西湖大學合作揭示多肽的氨基酸組成及拓撲結構對抗炎作用的影響

    自身免疫疾病是一種以炎癥細胞持續浸潤為特征的慢性破壞性疾病,可導致功能障礙和多器官衰竭,最終增加死亡風險。然而,直到現在,還沒有有效藥物來阻止這一過程。細胞外核酸與內源性蛋白或多肽(例如LL37)的復......

    Nature子刊|中山大學/西湖大學合作揭示多肽的氨基酸組成及拓撲結構對抗炎作用的影響

    自身免疫疾病是一種以炎癥細胞持續浸潤為特征的慢性破壞性疾病,可導致功能障礙和多器官衰竭,最終增加死亡風險。然而,直到現在,還沒有有效藥物來阻止這一過程。細胞外核酸與內源性蛋白或多肽(例如LL37)的復......

    中科院生物物理研究所團隊研究揭示染色質結構和折疊機制

    中國科學院生物物理研究所朱平研究組和李國紅研究組合作,揭示了連接組蛋白H5介導的核小體結合和染色質折疊和高級結構形成機制。相關論文近期發表于《細胞研究》。在真核生物中,基因組DNA被分層包裝到細胞核內......

    致密核物質性質理論研究新進展

    近期,中國科學院近代物理研究所核物理中心研究員雍高產在核物質相結構與中子星“超子謎團”研究方面取得進展。相關研究成果發表在《物理快報B》(PhysicsLettersB)上。核物質相結構的探測研究是當......

    讓氨基酸檢測更加全面!復旦中山檢驗再出“質譜”新項目

    近期,復旦大學附屬中山醫院檢驗科開發了氨基酸(AminoAcid,AA)質譜檢測方法,精準定量人體血液中氨基酸含量,有助于評估個體營養狀況和監測疾病治療療效,助力臨床精準診斷和個性化醫療。氨基酸的生理......

    印遇龍院士團隊游離氨基酸檢測技術推進產業化

    7月3日,中國工程院院士、中國科學院亞熱帶農業生態研究所(下稱亞熱帶生態所)首席研究員印遇龍科研團隊與中科捷云(北京)信息技術有限公司在長沙舉行游離氨基酸檢測技術專利獨占實施許可簽約儀式。雙方將全力推......

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频