CCD和傳統底片相比,CCD 更接近于人眼對視覺的工作方式。只不過,人眼的視網膜是由負責光強度感應的桿細胞和色彩感應的錐細胞,分工合作組成視覺感應。 CCD經過長達35年的發展,大致的形狀和運作方式都已經定型。CCD 的組成主要是由一個類似馬賽克的網格、聚光鏡片以及墊于zui底下的電子線路矩陣所組成。目前有能力生產 CCD 的公司分別為:SONY、Philips、Kodak、Matsushita、Fuji和Sharp,大半是日本廠商。
CCD 結構與特點
目前主要有兩種類型的CCD光敏元件,分別是線性CCD和矩陣性CCD。線性CCD用于高分辨率的靜態照相機,它每次只拍攝圖象的一條線,這與平板掃描儀掃描照片的方法相同。這種CCD精度高,速度慢,無法用來拍攝移動的物體,也無法使用閃光燈。 矩陣式CCD,它的每一個光敏元件代表圖象中的一個像素,當快門打開時,整個圖象一次同時曝光。通常矩陣式CCD用來處理色彩的方法有兩種。一種是將彩色濾鏡嵌在CCD矩陣中,相近的像素使用不同顏色的濾鏡。典型的有G-R-G-B和C-Y-G-M兩種排列方式。這兩種排列方式成像的原理都是一樣的。在記錄照片的過程中,相機內部的微處理器從每個像素獲得信號,將相鄰的四個點合成為一個像素點。該方法允許瞬間曝光,微處理器能運算地非常快。這就是大多數數碼相機CCD的成像原理。因為不是同點合成,其中包含著數學計算,因此這種CCDzui大的缺陷是所產生的圖象總是無法達到如刀刻般的銳利。
CMOS是什么
互補性氧化金屬半導體CMOS(Complementary Metal-Oxide Semiconductor)和CCD一樣同為在數碼相機中可記錄光線變化的半導體。CMOS的制造技術和一般計算機芯片沒什么差別,主要是利用硅和鍺這兩種元素所做成的半導體,使其在CMOS上共存著帶N(帶–電) 和 P(帶+電)級的半導體,這兩個互補效應所產生的電流即可被處理芯片紀錄和解讀成影像。然而,CMOS的缺點就是太容易出現雜點, 這主要是因為早期的設計使CMOS在處理快速變化的影像時,由于電流變化過于頻繁而會產生過熱的現象。
CMOS特點
除了CCD和CMOS之外,還有富士公司*推出的SUPER CCD,SUPER CCD并沒有采用常規正方形二極管,而是使用了一種八邊形的二極管,像素是以蜂窩狀形式排列,并且單位像素的面積要比傳統的CCD大。將像素旋轉45度排列的結果是可以縮小對圖像拍攝無用的多余空間,光線集中的效率比較高,效率增加之后使感光性、信噪比和動態范圍都有所提高。 傳統CCD中的每個像素由一個二極管、控制信號路徑和電量傳輸路徑組成。SUPER CCD采用蜂窩狀的八邊二極管,原有的控制信號路徑被取消了,只需要一個方向的電量傳輸路徑即可,感光二極管就有更多的空間。SUPER CCD在排列結構上比普通CCD要緊密,此外像素的利用率較高,也就是說在同一尺寸下,SUPER CCD的感光二極管對光線的吸收程度也比較高,使感光度、信噪比和動態范圍都有所提高。 那為什么SUPER CCD的輸出像素會比有效像素高呢?我們知道CCD對綠色不很敏感,因此是以G-B-R-G來合成。各個合成的像素點實際上有一部分真實像素點是共用,因此圖象質量與理想狀態有一定差距,這就是為什么一些專業級數碼相機使用3CCD分別感受RGB三色光的原因。而SUPER CCD通過改變像素之間的排列關系,做到了R、G、B像素相當,在合成像素時也是以三個為一組。因此傳統CCD是四個合成一個像素點,其實只要三個就行了,浪費了一個,而SUPER CCD就發現了這一點,只用三個就能合成一個像素點。也就是說,CCD每4個點合成一個像素,每個點計算4次;SUPER CCD每3個點合成一個像素,每個點也是計算4次,因此SUPER CCD像素的利用率較傳統CCD高,生成的像素就多了。對于數碼相機來說,影像感光器件成像的因素主要有兩個方面:一是感光器件的面積;二是感光器件的色彩深度。 感光器件面積越大,成像較大,相同條件下,能記錄更多的圖像細節,各像素間的干擾也小,成像質量越好。但隨著數碼相機向時尚小巧化的方向發展,感光器件的面積也只能是越來越小。
除了面積之外,感光器件還有一個重要指標,就是色彩深度,也就是色彩位,就是用多少位的二進制數字來記錄三種原色。非專業型數碼相機的感光器件一般是24位的,點的采樣時是30位,而記錄時仍然是24位,專業型數碼相機的成像器件至少是36位的,據說已經有了48位的CCD。對于24位的器件而言,感光單元能記錄的光亮度值zui多有2^8=256級,每一種原色用一個8位的二進制數字來表示,zui多能記錄的色彩是256x256x256約16,77萬種。對于36位的器件而言,感光單元能記錄的光亮度值zui多有2^12=4096級,每一種原色用一個12位的二進制數字來表示,zui多能記錄的色彩是4096x4096x4096約68.7億種。舉例來說,如果某一被攝體,zui亮部位的亮度是zui暗部位亮度的400倍,用使用24位感光器件的數碼相機來拍攝的話,如果按低光部位曝光,則凡是亮度高于256倍的部位,均曝光過度,層次損失,形成亮斑,如果按高光部位來曝光,則某一亮度以下的部位全部曝光不足,如果用使用了36位感光器件的專業數碼相機,就不會有這樣的問題。
2023年已經過半,在上半年,整個電子半導體產業表現低迷,更令人擔憂的是,第二季度的供需行情不如預期,這給下半年的產業發展蒙上了一層陰影。雖然全年同比負增長的態勢不可避免,但人們希望與上半年相比,下半......
由日本京都大學科研人員負責的產學協同軟錯誤研究團隊,開發了一種可使用不同中子源獲取半導體軟錯誤率的方法。軟錯誤率一般通過在地面上再現宇宙射線環境的特殊中子源進行實驗評估。而該方法則是通過將任意中子源的......
半導體產業作為現代科技的支撐,正迅速發展壯大。隨著信息技術的快速發展和人工智能的興起,半導體芯片的需求量不斷增長。半導體產業的發展不僅催生了一批優秀的企業和創新技術,也推動了整個經濟的繁榮。同時,半導......
伴隨著夏日驕陽,又到了一年一度的Antop獎揭曉時刻。歷經全網投票和專家評審后,萊伯泰科申報的LabMS3000ICP-MS電感耦合等離子體質譜儀正式獲得ANTOP獎——半導體領域國產ICPMS先行者......
日前,在2023中關村論壇“北京(國際)第三代半導體創新發展論壇”上,科學技術部黨組成員、副部長相里斌表示,以碳化硅、氮化鎵為代表的第三代半導體具有優異性能,在信息通信、軌道交通、智能電網、新能源汽車......
“連雨不知春去,一晴方覺夏深”六月已至,伴隨著美好時節,2023年第一期ANTOP獎的申報和評審工作也正在如火如荼地開展中。由北京萊伯泰科儀器股份有限公司申報的“半導體領域ICPMS”ANTOP獎進入......
光在復雜介質中的傳播是光學和相對論的經典課題。在愛因斯坦提出廣義相對論不久,W.Gordon,I.E.Tamm和G.V.Skrotskii等將費馬原理推廣到彎曲時空。1960年,J.Plebanski......
據社交媒體上的報道,臺灣半導體制造公司(TSMC)的工程師被要求在機器內部尋找一個相當有趣的紙條,以確保他們正確地清潔和檢查設備。臺積電是世界上最大的合同芯片制造商,每年生產成千上萬的半導體晶圓。它還......
日本理化學研究所的物理學家開發了一個優化半導體納米設備的理論模型,證明了精心設計的量子點可以創造出抗電噪聲的強大的硅空旋量子比特。這項研究對于理解去噪和設計大規模量子計算機至關重要。理化學研究所三位物......
近日,英國宣布為芯片制造行業提供的10億英鎊(約12.5億美元)補貼。根據Politico本周的一份報告,據報道,英國首相里希·蘇納克(RishiSunak)將追隨美國和幾個歐洲國家政府的腳步,宣布一......