線粒體蛋白質轉運的概述
線粒體的蛋白合成能力有限,大量線粒體蛋白在細胞質中合成,定向轉運到線粒體。這些蛋白質在在運輸以前,以未折疊的前體形式存在,與之結合的分子伴侶(屬hsp70家族)保持前體蛋白質處于非折疊狀態。通常前體蛋白N端有一段信號序列稱為導肽、前導肽或轉運肽(leadersequence、presequence或transit-peptide),完成轉運后被信號肽酶(signalpeptidase)切除,就成為成熟蛋白,這種現象就叫做后轉譯。 線粒體前體蛋白信號序列的特點是:①多位于肽鏈的N端,由大約20個氨基酸構成;②沒有帶負電荷的氨基酸,形成一個兩性α螺旋,帶正電荷的氨基酸殘基和不帶電荷的疏水氨基酸殘基分別位于螺旋的兩側,現在認為這個螺旋與轉位因子的識別有關;③對所牽引的蛋白質沒有特異性要求,非線粒體蛋白連接上此類信號序列,也會被轉運到線粒體。此外有些信號序列位于蛋白質內部,完成轉運后不被切除,還有些信號序列位于前體蛋白C端,如線粒......閱讀全文
線粒體蛋白質轉運的概述
線粒體的蛋白合成能力有限,大量線粒體蛋白在細胞質中合成,定向轉運到線粒體。這些蛋白質在在運輸以前,以未折疊的前體形式存在,與之結合的分子伴侶(屬hsp70家族)保持前體蛋白質處于非折疊狀態。通常前體蛋白N端有一段信號序列稱為導肽、前導肽或轉運肽(leadersequence、presequenc
概述轉運RNA的結構
轉運RNA分子由一條長70~90個核苷酸并折疊成三葉草形的短鏈組成的。上圖中有兩種不同的分子,苯丙氨酸tRNA(4tna)和天冬氨酸tRNA(2tra)。tRNA鏈的兩個末端在圖上方指出的L形結構的末端互相接近。氨基酸在箭頭示意的位置被連接。在這條鏈的中央形成了L形臂,如圖《tRNA的三葉草結構
概述寡肽的轉運機制
完整肽進入上皮細胞,而在細胞內水解的吸收通路的存在被忽視了相當長的時間。早在100多年前就有人提到了肽轉運的可能性(Matthews,1987)。Agar(1953)年證實了完整雙甘肽在大鼠腸道跨上皮的轉運。但是由于受傳統蛋白質消化吸收理論的影響,學者們對其它的吸收方式不容易接受,并且由于雙甘肽
線粒體疾病的概述
線粒體疾病或功能障礙是一個能源生產的問題。幾乎在體內的所有的細胞都有線粒體。線粒體是微小的“發電廠”,為身體生產重要的能源。線粒體病是指細胞內的發電廠的運轉產生異常。當這種情況發生時,身體的某些功能不能正常工作。這是因為如果身體有電源故障:會產生漸變的效果,就好像“掉電”或“黑電”現象發生。在科
概述轉運RNA的功能介紹
主要是攜帶氨基酸進入核糖體,在mRNA指導下合成蛋白質。即以mRNA為模板,將其中具有密碼意義的核苷酸順序翻譯成蛋白質中的氨基酸順序(見蛋白質的生物合成、核糖體)。tRNA與mRNA是通過反密碼子與密碼子相互作用而發生關系的。在肽鏈生成過程中,第一個進入核糖體與mRNA起始密碼子結合的tRNA叫
PNAS:線粒體蛋白轉運的“兩面性”
線粒體是細胞的能量工廠。通過氧化(底物水平的磷酸化)分解糖類的代謝物,合成著細胞所需的絕大多數能量貨幣——ATP。因此,線粒體的正常工作,就像煉油廠或者發電廠對現代社會那樣重要。線粒體的正常工作需要大量的蛋白質提供支持。一般認為,在線粒體中,蛋白質含量是通過細胞質新合成蛋白質輸入和老舊蛋白質的降
關于轉運RNA的結構的概述
轉運RNA分子由一條長70~90個核苷酸并折疊成三葉草形的短鏈組成的。上圖中有兩種不同的分子,苯丙氨酸tRNA(4tna)和天冬氨酸tRNA(2tra)。tRNA鏈的兩個末端在圖上方指出的L形結構的末端互相接近。氨基酸在箭頭示意的位置被連接。在這條鏈的中央形成了L形臂,如圖下方所示,露出了形成反
線粒體ADP/ATP載體轉運ATP和ADP的分子機制
在一項新的研究中,來自英國劍橋大學、東安格利亞大學、比利時弗蘭德斯生物技術研究所(VIB)和美國國家神經疾病與卒中研究所的研究人員發現了一種稱為線粒體ADP/ATP載體(mitochondrial ADP/ATP carrier)的關鍵轉運蛋白如何轉運三磷酸腺苷(ATP),即細胞的化學燃料。這個
線粒體呼吸測定儀概述
線粒體呼吸測定儀即為傳統意義上的液相氧電極,氧電極是為測定水中微量溶解氧含量而設計的一種極譜電極,除了測定線粒體呼吸還具有更為廣泛的用途。早在二十世紀三十年代就有人用裸露的銀-鉑電極研究藻類的光合作用。自從五十年代薄膜氧電極問世以來,又大大擴展了它的應用范圍。由于它具有靈敏度高、反應快、可以連續
Cell解答線粒體內外膜轉運之謎,探秘細胞能源特供渠道
弗萊堡大學的研究人員與國際同事合作,描述了水-不溶性膜蛋白如何在伴侶蛋白的幫助下通過線粒體膜之間的含水空間。 膜蛋白是介導細胞動力工廠輸入輸出的“守門員”。和組成人體其他部分的器官一樣,真核細胞內部含有許多大大小小的細胞器。線粒體的主要作用是合成能量分子“三磷酸腺苷(ATP)”,線粒體每天輸送