應用隨著各個位置部署的地震傳感器數量的增加,地震數據的可靠性也會提高。從地震數據中可以提取大量信息,這些信息可用于廣泛的應用,例如結構健康監測、地球物理研究、石油勘探甚至工業和家庭安全。本部分概要介紹地震傳感器網絡的三種常見應用。遠程地震網絡火山學和地震學研究將地震傳感器部署在險峻(有時甚至危險)的地形中34。監測火山內部過程需要在多點進行地震動監測。在火山活動的某些階段之后,這些位置可能會變得危險,并使地震傳感器無法取回。低成本、低功耗地震傳感器將會降低研究成本,同時保持很長的使用壽命。另一個類似情況是板塊運動的特征,這也需要沿著斷層線部署大量地震傳感器。地震預警系統S波和面波是更具破壞性的地震波,但其傳播速度比破壞性最小的P波要慢。利用這種特征可以實現一種檢測地震早期跡象的地震預警系統。這樣,所有類型的系統都有一個很短的時間來作出響應,防止地震造成重大破壞。在劇烈地面震動發生前的一刻,住宅和商業建筑將能夠關閉電力系統和天然氣......閱讀全文
應用隨著各個位置部署的地震傳感器數量的增加,地震數據的可靠性也會提高。從地震數據中可以提取大量信息,這些信息可用于廣泛的應用,例如結構健康監測、地球物理研究、石油勘探甚至工業和家庭安全。本部分概要介紹地震傳感器網絡的三種常見應用。遠程地震網絡火山學和地震學研究將地震傳感器部署在險峻(有時甚至危險)的
摘要地震對密集的商業和住宅區以及所有類型的建筑物構成了重大威脅。隨著這些區域越來越大,建筑物越來越多,地震監測需要實現一個廣泛的傳感器網絡。由于成本高且復雜,傳統儀器不能勝任。使用微機電系統(MEMS)加速度計和堅固耐用的小型地震檢波器,可以開發低成本物聯網(IoT)解決方案。有源元器件和轉換器的最
現代地震儀和地震動傳感器概述地震檢測設備通常稱為地震儀,已經從使用傳統的筆和擺錘發展到使用電子和機電傳感器。這些傳感器的設計進步產生了具有不同工作頻率范圍、檢測機制和測量不同地震動參數的儀器。應變地震儀歷史上的地震儀器只能記錄地動位移。技術的進步使得通過不同機制來測量地動位移成為可能。應變地震儀或應
分辨率和采樣速率在非常低的頻率下,地震引起的地震動幅度可能非常小。用于地震儀器的數據記錄儀能夠以高分辨率記錄各種采樣速率的信號。寬帶地震儀至少需要20位數據分辨率,采樣速率為最低0.1 SPS(樣本/秒)至最高200 SPS。短周期速度傳感器和A類加速度計至少需要22位數據分辨率,采樣速率為1
低成本緊湊型地震檢波器僅檢測單個通道,諧振頻率通常大于4.5 Hz,靈敏度大于25 V/m/s。同質三軸排列允許將三個類似的單通道地震檢波器組合成一個三軸地震動傳感器。需要一個周期擴展器來向下擴展地震檢波器帶寬,以達到寬帶傳感器的標準儀器規格。當設計采用單電源供電時,周期擴展器還可以用作增益
確定地震強度的方法有很多7。這些方法使用從以往地震中收集的數據,創建自己的地震動預測方程(GMPE)來預測強度值。推導出的方程式至少使用一個地震動參數或地震動參數的組合,即峰值地震動位移(PGD)、峰值地震動速度(PGV)和峰值地震動加速度(PGA)。早期方程主要基于PGA,有幾種使用了PGV和PG
根據地震檢波器的機械規格可以創建等效電氣模型。圖4顯示了使用SM-6 4.5 Hz地震檢波器的機械參數的電氣模型。17圖4.使用產品數據表中的機械參數得出的SM-6 4.5 Hz地震檢波器的等效電氣模型17為了擴展帶寬以覆蓋適用于地震檢測的較低頻率,可以使用周期擴展器。低頻響應擴展的三種最常見方法是
地震傳感器儀器指南為了提供可重復性和一致性,并支持采用地震儀陣列或地震傳感器網絡進行地震信號分析,需要對所用的儀器制定一套標準和規范。USGS已為其要部署在國家先進地震系統(ANSS)中的儀器設定了標準22。本部分根據USGS提到的經驗和技術趨勢,討論廣泛應用實現期望器件性能所需的不同規格。數據采集
10 關于地震監測系統的一切”。IMV Corporation,2019年6月。11 Brendon A. Bradley、Misko Cubrinovski、Gregory A. MacRae和Rajesh P. Dhakal。“基于頻譜加速度方程的SI地震動預測方程”。美國地震學會通報,
V.HPLC應用一、樣品測定1.流動相比例調整:由于我國藥品標準中沒有規定柱的長度及填料的粒度,因此每次新開檢新品種時幾乎都須調整流動相(按經驗,主峰一般應調至保留時間為6~15分鐘為宜)。所以建議第一次檢驗時請少配流動相,以免浪費。弱電解質的流動相其重現性更不容易達到,請注意充分平衡柱。2.樣品配