熒光顯微鏡的原理及應用要點
熒光顯微鏡是利用特定波長的光照射被檢物體產生熒光進行鏡檢的顯微光學觀測技術,已有100多年歷史。近年來,由于免疫熒光在醫學研究、診斷領域里的廣泛應用,FISH、綠色熒光蛋白(GFP)技術分別在基因組學、蛋白質組學研究方面的推廣,顯微照相、數字CCD成像技術的輔助驅動,賦予這一傳統技術更新的應用價值和生命力。 基本原理 熒光:是一種非溫度輻射冷光,據發生性質可分為光化熒光(由特定光源光譜激發而產生的熒光)、放射熒光(放射性物質激發)、生物熒光(生物體發出)、化學熒光(如磷氧化時)等。 熒光現象:某物質在受到某種特定波長的高能量光(短波長)照射后獲取能量,幾乎即時(約在10~15s后)其分子內的電子躍遷到較高能級軌道使分子進入激發態,激發態的分子不通過內部轉換方式消耗能量回到基態,而是釋放出相應較低能量的光量子→人眼可見的熒光(較長波長)。 熒光現象有兩種:一次熒光現象,又稱“固有熒光”或“自發熒光”,是指經照射后,就能......閱讀全文
熒光顯微鏡檢測熒光
生物顯微鏡是用來觀察生物切片、生物細胞、細菌以及活體組織培養、流質沉淀等的觀察和研究,同時可以觀察其他透明或者半透明物體以及粉末、細小顆粒等物體。左圖所示為生產的倒置生物顯微鏡型,該生物顯微鏡也是食品廠、飲用水廠辦QS、HACCP認證的必備檢驗設備。生物顯微鏡供醫療衛生單位、高等院校、研究所用于微生
熒光顯微鏡
熒光顯微鏡一般分為透射和落射式兩種類型。a.透射式:激發光來自被檢物體的下方,聚光鏡為暗視野聚光鏡,使激發光不進入物鏡,而使熒光進入物鏡。b.落射式:透射式目前幾乎被淘汰,新型的熒光顯微鏡多為落射式,光源來自被檢物體的上方,在光路中具有分光鏡,所以對透明和不透明的被檢物體都適用。由于物鏡起了聚光鏡的
熒光顯微鏡
熒光顯微鏡熒光顯微鏡是以紫外線為光源,用以照射被檢物體,?使之發出熒光,然后在顯微鏡下觀察物體的形狀及其所在位置。熒光顯微鏡用于研究細胞內物質的吸收、運輸、化學物質的分布及定位等。 細胞中有些物質,如葉綠素等,受紫外線照射后可發熒光;另有一些物質本身雖不能發熒光,但如果用熒光染料或熒光抗體染色后,經
熒光顯微鏡
熒光顯微鏡熒光顯微鏡是用短波長的光線照射用熒光素染色過的被檢物體,使之受激發后而產生長波長的熒光,然后觀察。熒光顯微鏡廣泛應用于生物,醫學等領域。(1)熒光顯微鏡一般分為透射和落射式兩種類型。a.透射式:激發光來自被檢物體的下方,聚光鏡為暗視野聚光鏡,使激發光不進入物鏡,而使熒光進入物鏡。b.落射式
熒光顯微鏡
折疊熒光顯微鏡在螢光顯微鏡上,必須在標本的照明光中,選擇出特定波長的激發光,以產生熒光,然后必須在激發光和熒光混合的光線中,單把熒光分離出來以供觀察。因此,在選擇特定波長中,濾光鏡系統,成為極其重要的角色。熒光顯微鏡原理:(A) 光源:光源輻射出各種波長的光(以紫外至紅外)。(B) 激勵濾光源:透過
熒光顯微鏡
細胞中有些物質,如葉綠素等,受紫外線照射后可發熒光;另有一些物質本身雖不能發熒光,但如果用熒光染料或熒光抗體染色后,經紫外線照射亦可發熒光,熒光顯微鏡就是對這類物質進行定性和定量研究的工具之一。 當前位置: 生命經緯 > 實驗技術 > 實驗室安全 熒光顯微鏡 BIOX.C
葉綠素的熒光現象
葉綠素的熒光現象與磷光現象(1) 熒光現象:是指葉綠素在透射光下為綠色,而在反射光下為紅色的現象,這紅光就是葉綠素受光激發后發射的熒光。葉綠素溶液的熒光可達吸收光的10%左右。而鮮葉的熒光程度較低,指占其吸收光的0.1~1%左右。(2) 磷光現象:葉綠素除了照光時間能輻射出熒光外,去掉光源后仍能輻射
葉綠素的熒光現象
葉綠素的熒光現象與磷光現象(1) 熒光現象:是指葉綠素在透射光下為綠色,而在反射光下為紅色的現象,這紅光就是葉綠素受光激發后發射的熒光。葉綠素溶液的熒光可達吸收光的10%左右。而鮮葉的熒光程度較低,指占其吸收光的0.1~1%左右。(2) 磷光現象:葉綠素除了照光時間能輻射出熒光外,去掉光源后仍能輻射
葉綠素的熒光現象
光合色素的熒光現象和磷光現象葉綠素溶液在透射光下呈綠色,而在反射光下呈紅色,這種現象稱為葉綠素熒光現象。葉綠素為什么會發熒光呢?當葉綠素分子吸收光量子后,就由最穩定的、能量的最低狀態-基態(ground state)上升到不穩定的高能狀態-激發態(excited state)。葉綠素分子有紅光和藍光
葉綠素的熒光現象
葉綠素的熒光現象與磷光現象(1) 熒光現象:是指葉綠素在透射光下為綠色,而在反射光下為紅色的現象,這紅光就是葉綠素受光激發后發射的熒光。葉綠素溶液的熒光可達吸收光的10%左右。而鮮葉的熒光程度較低,指占其吸收光的0.1~1%左右。(2) 磷光現象:葉綠素除了照光時間能輻射出熒光外,去掉光源后仍能輻射
熒光顯微鏡概述
熒光顯微鏡(Fluorescence microscope) : 熒光顯微鏡是以紫外線為光源, 用以照射被檢物體, 使之發出熒光, 然后在顯微鏡下觀察物體的形狀及其所在位置。 熒光顯微鏡用于研究細胞內物質的吸收、運輸、化學物質的分布及定位等。 細胞中有些物質,如葉綠素等,受紫外線照射后可發熒光
熒光顯微鏡概述
熒光顯微鏡概述熒光顯微鏡與普通光學顯微鏡不同,它不是通過普通光源的照明觀察標本,而是利用一定波長的光(通常是紫外光或藍紫光)激發顯微鏡下標本內的熒光物質,使之發朗熒光,呈現熒光映像。所以,熒光顯微鏡的光源所起的作用不是直接照明,而是作為一種激發標本內的熒光物質的能源。我們之所以能觀察標本,不是由于光
熒光顯微鏡原理
一、熒光顯微鏡 熒光顯微鏡是免疫熒光細胞化學的基本工具。它是由光源、濾板系統和光學系統等主要部件組成。是利用一定波長的光激發標本發射熒光,通過物鏡和目鏡系統放大以觀察標本的熒光圖像。 (一)光源 現在多采用200W的超高壓汞燈作光源,它是用石英玻璃制作,中間呈球形,內充一定數量
熒光顯微鏡操作
? 1.開機:??? 1.1.打開房間總電源開關??? 1.2.打開電腦電源開關??? 1.3.打開數碼相機電源開關??? 1.4.打開顯微鏡電源開關(打開汞燈電源開關)??? 2.調試顯微鏡光路:??? 2.1.把載玻片放到載物臺上。調節聚焦。??? 2.2.根據物鏡指數乘0.8確定聚光鏡光圈值,
熒光顯微鏡原理
一、熒光顯微鏡 熒光顯微鏡是免疫熒光細胞化學的基本工具。它是由光源、濾板系統和光學系統等主要部件組成。是利用一定波長的光激發標本發射熒光,通過物鏡和目鏡系統放大以觀察標本的熒光圖像(圖3-15)。圖3-15 熒光顯微鏡的結構和主要部件 (一)光源 現在多采用200W的超高壓汞燈作光源,它是用石
熒光顯微鏡作用
1、熒光顯微鏡對于物質的檢出能力是非常高的,具有放大的作用; 2、而且對于被檢測物質的細胞的刺激也是非常小的,可以檢測活體的染色體; 3、還有就是可以進行多個步驟的染色。 4、對于熒光素的構造觀察是非常好的,一般的顯微鏡是看不出來的。 6、對于一些物質是否有熒光,熒光是什么色調的進行判斷
熒光顯微鏡詳解
? 在觀察某些特定物體的時候,我們需要用到熒光顯微鏡。熒光顯微鏡是利用的高發光率的點光源,經過濾色后得到一定波長的激發光,用激發光來激發被檢物中熒光物質而發出各種顏色的熒光,通過顯微鏡放大而成像的裝置。由于背景不會被激發出熒光,故與被檢物形成強烈的反差,這有利于分辨被檢物,即使熒光微弱,也能輕易識別
熒光顯微鏡用途
熒光顯微鏡是一種對能發熒光的物質,或經熒光色素染色后能發熒光的物質進行觀察的顯微鏡。它有如下特點:⒈ 它以紫外光或蘭紫單色光激發標本的熒光。因紫外光是不可見光,故由標本發出的熒光與背景反差很大。熒光顯微鏡通常是在黑暗的背景下觀察彩色圖象的,而普通顯微鏡是在亮的背景下觀察較暗的樣品的。熒光顯微鏡的對比
熒光顯微鏡特點
熒光顯微鏡,是光學顯微鏡的一種,也是免疫熒光細胞化學的基本工具。是以紫外線為光源, 用以照射被檢物體, 使之發出熒光, 然后在顯微鏡下觀察物體的形狀及其所在位置。用于研究細胞內物質的吸收、運輸、化學物質的分布及定位等。熒光顯微鏡和普通顯微鏡有以下的區別:1.照明方式通常為落射式,即光源通過物鏡投射于
熒光顯微鏡特點
熒光顯微鏡,是光學顯微鏡的一種,也是免疫熒光細胞化學的基本工具。是以紫外線為光源, 用以照射被檢物體, 使之發出熒光, 然后在顯微鏡下觀察物體的形狀及其所在位置。用于研究細胞內物質的吸收、運輸、化學物質的分布及定位等。熒光顯微鏡和普通顯微鏡有以下的區別:1.照明方式通常為落射式,即光源通過物鏡投射于
熒光顯微鏡簡介
什么是熒光顯微鏡?熒光顯微鏡是以紫外線為光源, 用以照射被檢物體, 使之發出熒光, 然后在顯微鏡下觀察物體的形狀及其所在位置。熒光顯微鏡用于研究細胞內物質的吸收、運輸、化學物質的分布及定位等。細胞中有些物質,如葉綠素等,受紫外線照射后可發熒光;另有一些物質本身雖不能發熒光,但如果用熒光染料或熒光抗體
熒光鏡檢術熒光顯微鏡
熒光鏡檢術-熒光顯微鏡熒光鏡檢術是用短波長的光線照射用熒光素染色過的被檢物體,使之受激發后而產生長波長的熒光,然后觀察。熒光鏡檢術廣泛應用于生物,醫學等領域。1.熒光鏡檢術一般分為透射和落射式兩種類型。(1)透射式:激發光來自被檢物體的下方,聚光鏡為暗視野聚光鏡,使激發光不進入物鏡,而使熒光進入物鏡
激光掃描共聚焦熒光顯微鏡熒光顯微鏡系統簡介
顯微鏡是LSCM的主要組件,它關系到系統的成像質量。顯微鏡光路以無限遠光學系統可方便地在其中插人光學選件而不影響成像質量和測量精度。物鏡應選取大數值孔徑平場復消色差物鏡,有利于熒光的采集和成像的清晰。物鏡組的轉換,濾色片組的選取,載物臺的移動調節,焦平面的記憶鎖定都應由計算機自動控制。 激光掃
超分辨熒光顯微鏡和普通熒光顯微鏡的區別
兩者在工作原理及應用方面存在不同。分述如下: 一、熒光顯微鏡 1、熒光顯微鏡是以紫外線為光源, 用以照射被檢物體, 使之發出熒光, 然后在顯微鏡下觀察物體的形狀及其所在位置。熒光顯微鏡用于研究細胞內物質的吸收、運輸、化學物質的分布及定位等。 細胞中有些物質,如葉綠素等,受紫外線照射后可發熒光
熒光顯微鏡的原理是什么熒光顯微鏡的原理詳解
熒光顯微鏡與普通光學顯微鏡不同,它不是通過普通光源的照明觀察標本,而是利用一定波長的光(通常是紫外光、藍紫光)激發顯微鏡下標本內的熒光物質,使之發射熒光,所以,熒光顯微鏡的光源所起的作用不是直接照明,而是作為一種激發標本的內熒光物質的能源。我們之所以能觀察標本,是由于光源的照明,而是標本內熒光物質吸
熒光顯微鏡的原理是什么熒光顯微鏡的原理詳解
熒光顯微鏡與普通光學顯微鏡不同,它不是通過普通光源的照明觀察標本,而是利用一定波長的光(通常是紫外光、藍紫光)激發顯微鏡下標本內的熒光物質,使之發射熒光,所以,熒光顯微鏡的光源所起的作用不是直接照明,而是作為一種激發標本的內熒光物質的能源。我們之所以能觀察標本,是由于光源的照明,而是標本內熒光物質吸
熒光顯微鏡記錄熒光圖像的方法
熒光顯微鏡所觀察到的熒光圖像,一是具有形態學特征,二是具有熒光的顏色和亮度,在判斷結果時,必須將二者結合起來綜合判斷。結果記錄根據主觀指標,即憑工作者目力觀察,作為一般定性觀察基本上是可靠的。隨著技術科學的發展,采用細胞分光光度計、流式細胞儀、激光共聚焦顯微鏡和圖像分析儀等儀器。但這些儀器記錄的結果
熒光顯微鏡記錄熒光圖像的方法
熒光顯微鏡所觀察到的熒光圖像,一是具有形態學特征,二是具有熒光的顏色和亮度,在判斷結果時,必須將二者結合起來綜合判斷。結果記錄根據主觀指標,即憑工作者目力觀察,作為一般定性觀察基本上是可靠的。隨著技術科學的發展,采用細胞分光光度計、流式細胞儀、激光共聚焦顯微鏡和圖像分析儀等儀器。但這些儀器記錄的結果
葉綠素的熒光現象實驗
實驗方法原理:物質具有不同的能態,物質中的某些電子吸收了光量子的能量后,物質從原來穩定狀態的能級跳躍到一個較高的能級。這種穩定狀態被稱為基態;電子從基態跳躍到較高能級的現象稱為激發;激發狀態的電子稱為激發態電子。葉綠體色素分子吸收光量子后,使其分子內的電子躍遷而變為激發態,由于激發能未被適當的接受體
葉綠素的熒光現象實驗
實驗方法原理?物質具有不同的能態,物質中的某些電子吸收了光量子的能量后,物質從原來穩定狀態的能級跳躍到一個較高的能級。這種穩定狀態被稱為基態;電子從基態跳躍到較高能級的現象稱為激發;激發狀態的電子稱為激發態電子。葉綠體色素分子吸收光量子后,使其分子內的電子躍遷而變為激發態,由于激發能未被適當的接受體