掃描隧道顯微鏡怎樣操縱原子
用STM進行單原子操縱主要包括三個部分,即單原子的移動,提取和放置。使用STM進行單原子操縱的較為普遍的方法是在STM針尖和樣品表面之間施加一適當幅值和寬度的電壓脈沖,一般為數伏電壓和數十毫秒寬度。由于針尖和樣品表面之間的距離非常接近,僅為0.3-1.0nm。因此在電壓脈沖的作用下,將會在針尖和樣品之間產主一個強度在 109~1010V/m數量級的強大電場。這樣,表面上的吸附原子將會在強電場的蒸發下被移動或提取,并在表面上留下原子空穴,實現單原子的移動和提取操縱。同樣,吸附在STM針尖上的原子也有可能在強電場的蒸發下而沉積到樣品的表面上,實現單原子的放置操縱。 近代以來,由于人們的觀察視野已經延伸到了納米領域,而光束在成像時總會受到有限大小的有效光闌的限制,所以此時光的衍射作用就不容忽略了。對于顯微鏡來說,其發光物一般距物像很近,這時應考慮菲涅爾衍......閱讀全文
掃描隧道顯微鏡怎樣操縱原子
? ? ? 用STM進行單原子操縱主要包括三個部分,即單原子的移動,提取和放置。使用STM進行單原子操縱的較為普遍的方法是在STM針尖和樣品表面之間施加一適當幅值和寬度的電壓脈沖,一般為數伏電壓和數十毫秒寬度。由于針尖和樣品表面之間的距離非常接近,僅為0.3-1.0nm。因此在電壓脈沖的作用下,將會
掃描隧道顯微鏡(STM)怎樣操縱原子
? ? ? ?用STM進行單原子操縱主要包括三個部分,即單原子的移動,提取和放置。使用STM進行單原子操縱的較為普遍的方法是在STM針尖和樣品表面之間施加一適當幅值和寬度的電壓脈沖,一般為數伏電壓和數十毫秒寬度。由于針尖和樣品表面之間的距離非常接近,僅為0.3-1.0nm。因此在電壓脈沖的作用下,將
掃描隧道顯微鏡單原子操縱技術及其物理機理出自哪里
? ? ?掃描隧道顯微鏡 Scanning Tunneling Microscope 縮寫為STM。它作為一種掃描探針顯微術工具,掃描隧道顯微鏡可以讓科學家觀察和定位單個原子,它具有比它的同類原子力顯微鏡更加高的分辨率。此外,掃描隧道顯微鏡在低溫下(4K)可以利用探針尖端精確糙。掃描隧道顯微鏡縱原子
掃描隧道顯微鏡與原子力顯微鏡的掃描異同
1. constant interaction mode 保持針尖和樣品表面相互作用(隧道電流之于STM,原子間作用力之于AFM)的值恒定,這個值一般與針尖和表面間距離相關。 當針尖在xy軸方向移動時,由于樣品表面起伏,為了保持電流或原子間作用力的值不變,探針(或樣品表面)會在z軸方向作出調
掃描隧道顯微鏡
掃描隧道顯微鏡(scanning tunneling microscope,STM) 由Binnig等1981年發明,根據量子力學原理中的隧道效應而設計。當原子尺度的針尖在不到一個納米的高度上掃描樣品時,此處電子云重疊,外加一電壓(2mV~2V),針尖與樣品之間產生隧道效應而有電子逸出,形成隧
掃描隧道顯微鏡 (STM)隧道針尖簡介
? ? ? ?隧道針尖的結構是掃描隧道顯微技術要解決的主要問題之一。針尖的大小、形狀和化學同一性不僅影響著掃描隧道顯微鏡圖象的分辨率和圖象的形狀,而且也影響著測定的電子態。針尖的宏觀結構應使得針尖具有高的彎曲共振頻率,從而可以減少相位滯后,提高采集速度。如果針尖的尖端只有一個穩定的原子而不是有多重針
掃描隧道顯微鏡與原子力顯微鏡的探針異同
1. cantilever based probe 用于原子力顯微鏡(AFM)。由于原子間作用力無法直接測量,AFM使用的探針是一個附著在有彈性的懸臂上的小針尖,懸臂另一面可以反射激光。 隨著針尖移動,針尖和樣品表面的作用力使得懸臂發生細微的彎曲變化,導致激光反射路徑的變化,從而獲得樣品表面
掃描隧道顯微鏡(STM)與原子力顯微鏡(AFM)對比
? ? ? 掃描隧道顯微鏡(scanning tunneling microscope,縮寫為STM),亦稱為掃描穿隧式顯微鏡,是一種利用量子理論中的隧道效應探測物質表面結構的儀器。它于1981年由格爾德·賓寧及海因里希·羅雷爾在IBM位于瑞士蘇黎世的蘇黎世實驗室發明,兩位發明者因此與恩斯特·魯斯卡
掃描隧道顯微鏡(STM)
掃描隧道顯微鏡(STM)的基本原理是利用量子理論中的隧道效應。將原子線度的極細探針和被研究物質的表面作為兩個電極,當樣品與針尖的距離非常接近時(通常小于1nm),在外加電場的作用下,電子會穿過兩個電極之間的勢壘流向另一電極。這種現象即是隧道效應。
掃描隧道顯微鏡簡介
掃描隧道顯微鏡 Scanning Tunneling Microscope 縮寫為STM。它作為一種掃描探針顯微術工具,掃描隧道顯微鏡可以讓科學家觀察和定位單個原子,它具有比它的同類原子力顯微鏡更加高的分辨率。 此外,掃描隧道顯微鏡在低溫下(4K)可以利用探針尖端精確操縱原子,因此它在納米科技