<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 金屬所在新型二維材料研究中取得突破

    自2004年石墨烯被發現以來,探尋其他新型二維晶體材料一直是二維材料研究領域的前沿。正如石墨烯一樣,大尺寸高質量的其他二維晶體不僅對于探索二維極限下新的物理現象和性能非常重要,而且在電子、光電子等領域具有諸多新奇的應用。近年來,除石墨烯外,二維六方氮化硼、過渡族金屬硫化物、氧化物、黑磷等二維材料也被制備出來,極大地拓展了二維材料的性能和應用。 過渡族金屬碳化物是一類龐大的材料家族,它結合了陶瓷和金屬的特性,一方面具有很高的強度和硬度,以及高熔點、高溫下優異的穩定性和抗腐蝕性,良好的抗熱震性和低的化學反應活性;另一方面,它們具有優異的催化活性,在諸多化學反應中可與常用的貴金屬催化劑相媲美。此外,很多過渡族金屬碳化物,如Mo2C、W2C、WC、TaC 及NbC等,都具有超導特性。因此,過渡族金屬碳化物在電子、催化、儲能、極端條件下使用的工具等領域有著廣泛的應用。 幾年前,科學家通過使用氫氟酸或者氟化鋰與鹽酸的混合溶液刻蝕去除......閱讀全文

    首次發現由過渡金屬元素構造的二維原子晶體材料

      石墨烯的非凡性質根源于其蜂窩狀晶格中的粒子隧穿。近年來,石墨烯的成功使得人們關注其他新型二維蜂窩狀材料的研究,以進一步探索蜂窩狀結構非同尋常的電子學性質。中科院物理研究所納米物理與器件實驗室高鴻鈞研究組在Ir(111)襯底上成功制備出硅烯,并深入研究了它的幾何、電學性質以及和基底的相互作用

    金屬晶體的物質概況

    晶格結點上排列金屬原子-離子時所構成的晶體。金屬中的原子-離子按金屬鍵結合,因此金屬晶體通常具有很高的導電性和導熱性、很好的可塑性和機械強度,對光的反射系數大,呈現金屬光澤,在酸中可替代氫形成正離子等特性。主要的結構類型為面心立方最密堆積、六方密堆積和立方體心密堆積三種(見金屬原子密堆積)。金屬晶體

    金屬晶體的物質特性

    物理性質金屬陽離子所帶電荷越高,半徑越小,金屬鍵越強,熔沸點越高,硬度也是如此。例如第3周期金屬單質:Al > Mg > Na,再如元素周期表中第ⅠA族元素單質:Li > Na > K > Rb > Cs。硬度最大的金屬是鉻,熔點最高的金屬是鎢。延展性當金屬受到外力,如鍛壓或捶打,晶體的各層就會發生

    金屬晶體的物質缺陷

    在實際晶體中,原子排列不可能那樣規則和完整,往往存在著偏離理想結構的區域。通常把晶體中原子偏離其平衡位置而出現不完整性的區域稱為晶體缺陷。按晶體缺陷的幾何特征可將它們分為三大類:(1)點缺陷:特點是在空間三維方向的尺寸很小,相當于原子數量級。如空位、間隙原子等。 ’(2)線缺陷:特點是在兩個方向上尺

    寧波材料所合成出前過渡族金屬碳化物二維納米晶體材料

      近日,中國科學院寧波材料技術與工程研究所特種纖維與核能材料工程實驗室合成出全新的前過渡金屬碳化物二維納米單晶材料。該工作被國際期刊Angewandte Chemie-International Edition 作為VIP(very important paper, top 5%)文章在線發表(D

    關于實際金屬晶體的介紹

      由于原子并不處于靜止狀態,存在著外來原子引起的點陣畸變以及一定的缺陷,基本結構雖然仍符合上述規則性,但絕不是如設想的那樣完整無缺,存在數目不同的各種形式的晶體缺陷。另外還必須指出,絕大多數工業用的金屬材料不是只由一個巨大的單晶所構成,而是由大量小塊晶體組成,即多晶體。在整塊材料內部,每個小晶體(

    金屬晶體的基本概念

    金屬晶體都是金屬單質,構成金屬晶體的微粒是金屬陽離子和自由電子(也就是金屬的價電子)。在金屬晶體中,金屬原子以金屬鍵相結合。從價鍵法的角度看,在金屬晶體中,金屬原子的價電子不會只與鄰近的某一金屬原子以共價鍵結合(也沒有這么多價電子與所有的鄰近金屬原子形成共價鍵),而是金屬原子以其價電子公共化。

    超越硅極限二維晶體管誕生

    原文地址:http://news.sciencenet.cn/htmlnews/2023/4/497868.shtm“在彈道輸運晶體管中,電子像子彈一樣穿過溝道沒有受到碰撞,能量沒有被散射損失掉,所以彈道率越高的器件,能量利用效率更高。”近日,北京大學電子學院研究員邱晨光向《中國科學報》解釋。隨著硅

    二維晶體具有奇特彎曲泊松效應

      近日,南京航空航天大學機械結構力學與控制國家重點試驗室的納米力學研究團隊利用密度泛函原理研究發現了二維晶體中的彎曲泊松效應。研究成果5月23日發表在《物理評論快報》上。  泊松效應是材料力學中一個基本物理現象,即一個物體在一個方向受到壓縮或拉伸載荷,那么在另外兩個垂直方向將發生膨脹或收縮變形,這

    新型二維晶體材料硅烯研究取得進展

      尋找與硅基CMOS工藝兼容的新型電子學材料是凝聚態物理及其應用研究領域的主要任務之一。石墨烯作為由碳原子構成的二維原子晶體因具有優異的電學性質(特別是高載流子遷移率),有望與硅基CMOS工藝兼容成為制造新一代的高性能電子學器件的新型二維材料。近年來, 中科院物理所/北京凝聚態物理國家實驗室(

    迄今速度最快能耗最低二維晶體管問世

    原文地址:http://news.sciencenet.cn/htmlnews/2023/3/497096.shtm 本報北京3月26日電(記者晉浩天)北京大學電子學院彭練矛教授-邱晨光研究員課題組日前制備出10納米超短溝道彈道二維硒化銦晶體管,首次使得二維晶體管實際性能超過Intel商用10納

    迄今速度最快能耗最低二維晶體管問世

      北京大學電子學院彭練矛教授-邱晨光研究員課題組日前制備出10納米超短溝道彈道二維硒化銦晶體管,首次使得二維晶體管實際性能超過Intel商用10納米節點的硅基鰭型晶體管,并將二維晶體管的工作電壓降到0.5V,這也是世界上迄今速度最快能耗最低的二維半導體晶體管。該研究成果以《二維硒化銦彈道晶體管》為

    增強光波的二維光子時間晶體創建

      芬蘭阿爾托大學、德國卡爾斯魯厄理工學院和美國斯坦福大學的研究團隊開發出一種創造光子時間晶體的方法,并表明這些奇異的人造材料可放大照射在它們身上的光。新發現發表在5日《科學進展》雜志上,或引領更高效、更強大的無線通信,并顯著改進激光器。  時間晶體最早是由諾貝爾獎得主弗蘭克·威爾切克于2012年提

    超冷帶電原子組成同類最大二維晶體

    奧地利科學家將105個帶電鈣原子冷卻到極低溫度,使其排列成二維晶體,得到了迄今最大的同類二維晶體,這一新晶體可用于研究量子材料或構建量子計算機。相關研究刊發于最新一期《PRX量子》雜志。一些晶體會表現出有趣的量子行為,如不尋常的磁性或完美的導電性等,但很難通過實驗了解每個原子如何實現這一點,也不可能

    單層二維材料可批量制造超薄晶體管

      一種叫做二硫化鉬的二維新材料可以在硅襯底上長出單層薄膜,為柔性電子器件的生產開辟了條新路。  用僅有幾個原子那么厚的薄膜做出微型、柔性的電路,一直是研究人員的夢想。然而,把這類二維薄膜生長到需要的規模,并生產出成批可靠的電子設備一直是個難題。  現在,材料科學家們已經找出一種方法,可以在直徑10

    超冷帶電原子組成同類最大二維晶體

      奧地利科學家將105個帶電鈣原子冷卻到極低溫度,使其排列成二維晶體,得到了迄今最大的同類二維晶體,這一新晶體可用于研究量子材料或構建量子計算機。相關研究刊發于最新一期《PRX量子》雜志。  一些晶體會表現出有趣的量子行為,如不尋常的磁性或完美的導電性等,但很難通過實驗了解每個原子如何實現這一點,

    延續摩爾定律,二維晶體管潛力如何?

      自20世紀60年代以來,電子電路上可容納的元器件數量每兩年便增加一倍,這種趨勢就是著名的摩爾定律。隨著晶體管越來越小,硅芯片上可容納的元器件數量在不斷增加。但目前看來,硅晶體管正接近它的物理極限。只有開發出全新類型的材料和設備,才能釋放下一代計算機的潛力。單分子厚晶體管芯片或許能用來驅動下一代計

    金屬鉍納米帶二維金屬表面態研究獲進展

      近期,中國科學院強磁場科學中心田明亮研究員課題組在金屬鉍納米帶研究中取得了新進展。研究人員在超薄的單晶鉍納米帶中觀察到具有典型二維特征的Shubnikov-de Haas(SdH)量子振蕩行為,同時低磁場各向異性磁電阻結果確認了薄樣品中的量子輸運行為來源于二維表面態。實驗結果首次清晰地給出了Bi

    最大同類二維晶體出現,可用于研究量子材料

    奧地利科學家近日發現了一種新的同類二維晶體,這一研究開辟了探索量子材料和構建量子計算機的新途徑。研究結果已經發表在最新一期的《PRX量子》雜志上。據悉,奧地利科學家使用激光將105個帶電鈣原子冷卻到了極低的溫度,然后將它們擠壓成了一個平板,并先后將其懸浮于一個離子陷阱中。研究人員使用推動力來探索鈣原

    二維半金屬—二維超導體之間超流拖拽效應揭示

      15日,記者從中國科學技術大學獲悉,該校曾長淦教授、李林副研究員研究團隊與北京量子信息科學研究院解宏毅副研究員等合作,通過構筑石墨烯與氧化物界面超導體系的復合結構,揭示了二維半金屬和二維超導體之間由于量子漲落誘導的巨幅超流拖拽效應。相關成果日前在線發表于《自然物理》。  對于兩個空間相近但彼此絕

    二維半金屬—二維超導體之間超流拖拽效應揭示

    原文地址:http://news.sciencenet.cn/htmlnews/2023/1/492653.shtm 科技日報合肥1月15日電 (記者吳長鋒)15日,記者從中國科學技術大學獲悉,該校曾長淦教授、李林副研究員研究團隊與北京量子信息科學研究院解宏毅副研究員等合作,通過構筑石墨烯與氧化

    科學家證實自支撐單層二維分子晶體存在

    2月24日,《自然》刊發上海交通大學教授崔勇團隊及合作者的研究成果,研究人員證實了自支撐單層二維(2D)分子晶體的存在,明確了跨層次/跨尺度的手性表達過程,擴大了現有手性材料和2D材料體系。自2004年石墨烯被報道以來,單層二維材料因具備高縱橫比的片狀結構,大比例暴露活性位和易加工等特點,使其成為化

    二維原子晶體首現四角形結構

      中國南京航空航天大學納米科學研究所博士張助華、教授郭萬林與美國萊斯大學機械工程系講習教授Boris I. Yakobson合作,通過大規模基于第一原理的原子結構搜索,發現單原子層碳化鈦(TiC)二維原子晶體因為其獨特的原子雜化機制而具有高度穩定的四角形結構,有關這一全新的二維原子晶

    物理所新型二維晶體材料硅烯研究取得進展

      尋找與硅基CMOS工藝兼容的新型電子學材料是凝聚態物理及其應用研究領域的主要任務之一。石墨烯作為由碳原子構成的二維原子晶體,因具有優異的電學性質(特別是高載流子遷移率),有望與硅基CMOS工藝兼容成為制造新一代的高性能電子學器件的新型二維材料。   近年來, 中科院物理研究所/北京凝聚態物

    美國圣母大學實驗室意外合成二維有機準晶體

      ??????? 北京時間3月10日消息,國外媒體報道,準晶體已經挑逗和吸引了科學家們長達30年,現在這個奇怪的材料組有了一名古怪的新成員:由自我裝配的有機分子形成的二維準晶體。這種奇特的準晶體是扁平的,由單層的五邊環分子組成。這種分子在這一層內形成組,就像微弱的氫鍵將彼此連接在一起。這個分子組奇

    金屬所在新型二維材料研究中取得突破

      自2004年石墨烯被發現以來,探尋其他新型二維晶體材料一直是二維材料研究領域的前沿。正如石墨烯一樣,大尺寸高質量的其他二維晶體不僅對于探索二維極限下新的物理現象和性能非常重要,而且在電子、光電子等領域具有諸多新奇的應用。近年來,除石墨烯外,二維六方氮化硼、過渡族金屬硫化物、氧化物、黑磷等二維材料

    單晶體金屬材料要求性能有指標

    金屬材料的性能一般分為工藝性能和使用性能兩類。所謂工藝性能是指機械零件在加工制造過程中,金屬材料在所定的冷、熱加工條件下表現出來的性能。金屬材料工藝性能的好壞,決定了它在制造過程中加工成形的適應能力。由于加工條件不同,要求的工藝性能也就不同,如鑄造性能、可焊性、可鍛性、熱處理性能、切削加工性等。所謂

    金屬—有機光子晶體電浸潤過程誘導形貌轉變

      金屬光子晶體巧妙地將光子晶體的光調控性能與金屬材料的本征性能結合,展現了很多獨特的應用而倍受關注。比如,介孔金的光子晶體能夠同時放大光散射及表面增強拉曼散射,鎢光子晶體可以顯示高達1200 K的高操作溫度,用于選擇性熱發射器。金屬有機框架材料因具有大的比表面積、可調控的孔尺寸、貫通的三維空腔而在

    自然圖案化新型二維原子晶體材料及其功能化進展

      石墨烯是一種由碳原子構成的蜂窩狀單層結構。2004年Andre Geim和Konstantin Novoselov用剝離方法成功制備石墨烯并發現了其新奇的量子特性,2010年他們因此獲得了諾貝爾物理學獎。石墨烯具有超高的載流子遷移率、超高的透光率、室溫下的量子霍爾效應等優良特性,使其在電子學、光

    大連化物所二維原子晶體限域生長研究取得新進展

      近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室在二維原子晶體限域生長及原位表征研究工作中取得新進展,相關結果發表在美國化學會的《美國化學會·納米》上(ACS Nano; 2015, 9, 11589-11598)。  二維原子晶體及其異質結結構近年來受到廣泛關注,然而該結構的可控制備是

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频