即無反沖條件下的核γ射線共振譜。由于分辨能力非常高,對核外電子狀態的微小變化也能測定,因此可以得到化學位移、分子內的結合狀態及分子間相互作用等核外電子的信息。已用于鐵、錫、銪、銩、鉭等的物理、化學狀態的分析中。(見穆斯堡爾譜學)。......閱讀全文
即無反沖條件下的核γ射線共振譜。由于分辨能力非常高,對核外電子狀態的微小變化也能測定,因此可以得到化學位移、分子內的結合狀態及分子間相互作用等核外電子的信息。已用于鐵、錫、銪、銩、鉭等的物理、化學狀態的分析中。(見穆斯堡爾譜學)。
近日,大連化學物理研究所能源研究技術平臺穆斯堡爾譜研究組(DNL2005)王軍虎研究員團隊在前期原位電化學穆斯堡爾譜測試裝置基礎上,與我所儲能技術研究部(DNL17)李先鋒研究員、鄭瓊副研究員團隊,法國蒙彼利埃大學Moulay Tahar Sougrati博士合作,開發了原位離子電池57Fe和1
高級氧化技術(包括:光催化、催化濕式氧化、芬頓/類芬頓反應等)是基于羥基自由基(?OH)強氧化性發展而成的深度水處理技術。其中,芬頓/類芬頓反應由于其可以原位產生大量?OH自由基并對污染物具有較高礦化能力而被廣泛關注,然而,對非均相芬頓反應機理認識的不足一直制約著其發展。近兩年來,大連化物所航天
近日,我所能源研究技術平臺穆斯堡爾譜技術研究組(DNL2005組)王軍虎研究員團隊與韓國蔚山國家科學技術研究院Jong-Beom Baek院士和韓高峰博士團隊合作,利用穆斯堡爾譜技術的超高能量分辨率實現了對機械化學法制備的單原子鐵催化劑純度的精準表征。 利用機械化學的方法,可將大塊鐵等過渡金屬直接
穆斯堡爾效應:固體中的某些原子核有一定的幾率能夠無反沖地發射γ射線,而處于基態的原子核對前者發射的γ射線也有一定的幾率能夠無反沖地共振吸收。這種原子核無反沖地發射或共振吸收γ射線的現象就是穆斯堡爾效應。 穆斯堡爾譜:當γ射線通過一物體時,如果入射的γ光子的能量與物體中某些原子核的能級躍遷能量相
穆斯堡爾譜儀是用于測定物質γ射線無反沖共振吸收效應的儀器。其基本原理是:由放射源(γ光源)射出的γ光子被樣品中存在的穆斯堡爾核(如57Fe,119Sn)所吸收,形成共振吸收譜。樣品中穆斯堡爾核與核外化學環境的相互作用會引起共振吸收譜線的位置、形狀、數目的變化。反過來利用所測穆譜的這些變化推出穆核周圍
1、因為是特定核(如57Fe,119Sn)的共振吸收,所以其他核和元素不會對穆斯堡爾效應有所干擾。 2、核外環境對穆斯堡爾效應的影響的作用范圍通常比2納米要小(局限在相鄰二、三層離子之內),尤其是對于細晶和非晶態物質非常適用。 3、分辨率非常高,將57Fe的γ共振吸收作為例子,譜線自然寬度(
穆斯堡爾譜儀用于測定物質γ射線無反沖共振吸收效應的儀器。其基本原理是:由放射源(γ光源)射出的γ光子被樣品中存在的穆斯堡爾核(如57Fe,119Sn)所吸收,形成共振吸收譜,樣品中穆斯堡爾核與核外化學環境的相互作用會引起共振吸收譜線的位置、形狀、數目的 變化。反過來利用所測穆譜的這些變化推出穆核
穆斯堡爾譜儀的結構如圖所示,主要由放射源,驅動裝置,放大器,γ射線探測器和數據記錄設備組成。在透射穆斯堡爾譜中,因吸收發生共振時透過計數率最小,因此形成倒立的吸收峰。對于一些簡單的譜圖,只需要進行定性分析就能獲得有價值的信息;對于復雜的譜圖,則需要將其進行分峰擬合,然后與理論譜線進行比對才能得到
20世紀發現光(電磁波)的共振散射現象; 1929年昆(Kuhn)指出原子核體系也存在著γ共振散射現象; 1958年穆斯堡爾發現了g輻射的共振吸收中的穆斯堡爾效應; 1960年莎皮羅(前蘇聯)提出了穆斯堡爾效應的經典解釋理論; 1960年維謝爾(Visscher)提出了穆斯堡爾效應的量子