如何選擇小動物活體熒光成像系統
小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。與傳統技術相比,活體熒光成像技術不需要殺死動物,可以對同一個動物進行長時間反復跟蹤成像,既可以提高數據的可比性,避免個體差異對試驗結果的影響;又可以了解標記物在動物體內的分布和代謝情況,避免傳統體外實驗方法的諸多缺點;特別是還可以用原生態的方法來研究問題,即研究對象不需要先行標記,其后用熒光標記物來研究其行為,觀察結果真實可靠。那如何選擇自己最合適的活體熒光成像系統呢?本文試從以下幾點來進行分析。1、 熒光標記的選擇活體熒光成像技術主要有三種標記方法:熒光蛋白標記、熒光染料標記和量子點標記。熒光蛋白適用于標記腫瘤細胞、病毒、基因等。通常使用的是GFP、EGFP、RFP(DsRed)等。熒光染料標記和體外標記方法相同......閱讀全文
植物熒光成像儀——熒光成像簡介
熒光是自然界常見的一種發光現象。熒光是光子與分子的相互作用產生的,這種相互過程可以通過雅布隆斯基(Jablonslc)分子能級圖描述:大多數分子在常態下,是處于基態的最低振動能級So,當受到能量(光能、電能、化學能等等)激發后,原子核周圍的電子從基態能級So躍遷到能量較高的激發態(第一或第二激發
植物熒光成像儀——熒光成像原理
熒光是自然界常見的一種發光現象。熒光是光子與分子的相互作用產生的,這種相互過程可以通過雅布隆斯基(Jablonslc)分子能級圖描述:大多數分子在常態下,是處于基態的最低振動能級So,當受到能量(光能、電能、化學能等等)激發后,原子核周圍的電子從基態能級So躍遷到能量較高的激發態(第一或第二激發
熒光成像系統
對完全校準好的熒光成像系統,當用不同的濾色鏡組時,樣品上一個點在檢測器上精確成像為一個點,也就是像素對像素。然而,不同顏色的通道 merge 時,物鏡的色差校正不夠、濾鏡光路沒有完全對準都會使得熒光信號之間的記錄有差錯。對具有復雜圖案的圖像或明暗信號相混的圖像,這個可能就檢測不到。會得出這樣的結論:
熒光成像系統
用熒光顯微鏡進行3D球狀體熒光成像時,需要進行儀器設置優化和使用高級功能才能得到更好的成像結果。對球狀體進行Z軸層掃時,需要選擇合適的物鏡并進行合適地聚焦才能拍出更清晰的圖片。EVOS細胞成像系統和配套的CellesteTM成像分析軟件可以完美地對球狀體的大小、結構和蛋白表達水平進行定性和定量分析。
熒光成像與高光成像區別
熒光成像與高光成像區別如下:1、原理:熒光成像是利用熒光標記的分子在激發后發出特定波長的光來成像,而高光成像是基于樣本的反射或透射光強度的差異來成像。2、樣本處理:熒光成像需要在樣本中引入熒光標記物,通常是通過染色或基因工程技術來實現,而高光成像則不需要對樣本進行特殊處理,直接觀察樣本的自然反射或透
FluorCam多光譜熒光成像技術應用案例—多光譜熒光成像...
FluorCam多光譜熒光成像技術應用案例—多光譜熒光成像是什么1.?多光譜熒光的發現及特性二十世紀八九十年代,植物生理學家對植物活體熒光——主要是葉綠素熒光研究不斷深入。激發葉綠素熒光主要是使用紅光、藍光或綠光等可見光。當科學家使用UV紫外光對植物葉片進行激發,發現植物產生了具備4個特征性波峰的熒
活體成像中熒光染料的選擇與成像
Cy5.5(Ex/Em:678/701 nm)和Cy7(Ex/Em:749/776 nm)是對分子標記的最優選擇之一;DiD(Ex/Em:644/663 nm)、DiR(Ex/Em:748/780)染料則常用于活體成像實驗中對細胞進行標記。??一、Cy5.5 、Cy7 Cy5.5 、Cy7避開了可見
植物多光譜熒光成像系統多激發光、多光譜熒光成像技術
多激發光、多光譜熒光成像技術:通過光學濾波器技術,僅使特定波長的光(激發光)到達樣品以激發熒光,同時僅使特定波長的激發熒光到達檢測器。不同的熒光發色團(如葉綠素或GFP綠色熒光蛋白等)對不同波長的激發光“敏感”并吸收后激發出不同波長的熒光,根據此原理可以選配2個或2個以上的激發光源、濾波輪及相應
植物熒光成像儀概述
移動式植物熒光成像系統是一種用于農學、水利工程領域的分析儀器,于2015年3月24日啟用。 單幅成像面積最大的葉綠素熒光成像系統不小于35×35cm,可對整株植物甚至多株植物進行實驗成像分析; (2)可在野外自由移動,非損傷原位對植物進行葉綠素熒光成像研究; (3)高靈敏度CCD鏡頭,時間分辨
植物熒光成像儀——選型
光源 可選激光光源和發光二極管光源;激光光源為單波長非連續光,分辨率和靈敏度高;二極管光源相對激光光源結構更緊湊簡潔,激發光帶寬較寬,能量輸出相對較低,可以直接整合到圖像掃描設備內,也比較經濟,輕便; 熒光信號收集系統 主要包括振鏡式的掃描系統和擺頭式掃描系統。振鏡式的掃描系統通過快速擺動
顯微熒光成像相機選購必備
眾所周知,顯微熒光成像是一種相對特殊的成像研究,如果說一般的顯微成像拍攝還可以用普通的相機,那熒光成像確是一定要用專業的冷CCD相機才可以的。鑒于熒光成像光源一般較弱,要想的到良好的顯微圖片,還真不是一件容易的事。對于需要用到顯微熒光成像的用戶,建議是一定要買一款制冷的CCD相機,相對于不制冷的CC
化學發光熒光成像系統
化學發光熒光成像系統是一種用于生物學、基礎醫學、臨床醫學、藥學領域的分析儀器,于2017年6月27日啟用。 技術指標 1.檢測模式:熒光成像、數字化和化學發光成像; 2.激光波長:LD488、SHG532、LD635; 3.成像面積:40×46cm; 4.像素:10、25、50、100、20
STELLARIS的熒光壽命成像應用
上一期介紹了Leica的科學家們利用新一代Power HyD S檢測器與二代白激光,掙脫金字塔的束縛。然而,僅在這四個頂點上的不斷探索,似乎并不能完全復刻真實。于是科學家們提出了一個新的方向——功能成像。為了實現功能成像,我們在之前的成像基礎上引入一個嶄新的維度——熒光壽命成像。以往,提到熒光壽命成
免疫熒光實驗TIRF成像
Kindlin-2和talin共同作用于樁蛋白激活整合素的表達 整合素是一種跨膜蛋白,在介導細胞黏附到細胞外基質(ECM)過程中發揮重要的作用。整合素在和配位體結合并發揮作用之前需要被激活。Kindlin和talin如何在非造血細胞中介入激活整合素這一過程的原理并不十分清晰。美國的科研人員發現
活體GFP綠色熒光成像系統
? 系統提供動物活體綠色熒光蛋白的實時觀察與成像等一系列的熒光檢測。能夠應用在像深度腫瘤,大動物等活體腫瘤追蹤觀察成像研究。??? 該設備是一個高靈敏度的圖像成像工作系統,主要利用特定波長的激光進行激發后,通過高靈敏度的致冷CCD進行實時檢測后,獲得所需的各類 特性的圖像,有利于進一步的分析作用?。
活體熒光成像系統介紹(一)
一、 ?技術簡介活體生物熒光成像技術(in vivo bioluminescence imaging)是近年來發展起來的一項分子、基因表達的分析檢測系統。它由敏感的CCD及其分析軟件和作為報告子的熒光素酶(luciferase)以及熒光素(luciferin)組成。利用靈敏的檢測方法,讓研究人員
活體熒光成像系統介紹(二)
五、生產廠家1.美國KODAKImage Station In-Vivo FX多功能活體成像系統1.1簡介:該系統采用了Kodak公司科研級的超高靈敏度4百萬象素冷CCD,高安全標準的X-光模塊,以及ZL的放射性同位素磷屏等技術,實現了化學發光、全波長范圍熒光、放射性同位素以及X-光等的多功能檢測功
熒光成像與生物發光成像技術的優缺點比較
上次,我們對比了熒光成像和生物發光的基本原理。那針對自己的課題,生物發光和熒光成像哪個好?什么情況下選擇生物發光,什么情況下選擇熒光成像?今天為大家解答關鍵問題:熒光成像和生物發光成像的優缺點是什么?一、熒光成像技術優點數據來源:使用FOBI整體熒光成像系統對熒光染料Cy5標記的藥物進行觀察相比生物
熒光成像與生物發光成像技術的優缺點對比
一、熒光成像技術優點 數據來源:使用FOBI整體熒光成像系統對熒光染料Cy5標記的藥物進行觀察 相比生物發光成像,熒光成像技術的優勢主要表現在: 1 熒光蛋白及熒光染料標記能力更強 熒光標記分子種類繁多,包括熒光蛋白、熒光染料、量子點標記等,可以對基因、蛋白、抗體、化合藥
FluorCam多光譜熒光成像技術介紹
FluorCam多光譜熒光成像系統作為FluorCam葉綠素熒光成像系統的最高級型號,是目前唯一有能力實現了一臺儀器上同時完成葉綠素熒光、UV-MCF多光譜熒光、NDVI歸一化植被指數以及GFP、YFP、BFP、RFP、CFP、DAPI等熒光蛋白與熒光染料的成像分析功能。同時也可以加裝RGB真彩成像
雙向凝膠熒光染色與成像實驗
試劑、試劑盒提取液洗滌液溶解液第一向電泳緩沖液還原溶液烷基化溶液瓊脂糖溶液丙烯酰胺凝膠溶液儀器、耗材雙向凝膠電泳光掃描儀或密度計實驗步驟3.1 可溶性總蛋白的提取方法(三氯乙酸/丙酮法)( 1 ) 從擬南芥細胞懸浮培養液中收集細胞。( 2 ) 液氮中研磨細胞。( 3 ) 向研磨好的細胞粉末中加入提取
雙向凝膠熒光染色與成像實驗
試劑、試劑盒?提取液洗滌液溶解液第一向電泳緩沖液還原溶液烷基化溶液瓊脂糖溶液丙烯酰胺凝膠溶液儀器、耗材?雙向凝膠電泳光掃描儀或密度計實驗步驟 3.1 可溶性總蛋白的提取方法(三氯乙酸/丙酮法)( 1 ) 從擬南芥細胞懸浮培養液中收集細胞。( 2 ) 液氮中研磨細胞。( 3 ) 向研磨好的細胞粉末中加
體內熒光成像技術的進展(二)
可激活定靶探針可激活定靶探針一般用于酶活的功能成像。它們往往含有兩個以上的等同或不同的色素團,兩個色素團通過酶特異性多肽接頭彼此緊密相連。這類探針主要呈黑色,沒有或者很少發射熒光,這主要是由于非常相近(等同色素團)或者共振能的轉移(不同色素團 )所造成的淬滅效應所致。多肽接頭的切除,使它們的
體內熒光成像技術的進展(三)
成像新策略的出現改進探針親和性的多種途徑探針同靶點的緊密和特異性結合通常是成像成功的關鍵。因為許多成像靶點都位于細胞表面之外,所以多途徑原則可以用來改善探針的結合親和性。最近有兩篇文獻報道了用于異種移植腫瘤αvβ3 整合素(integrin)體內成像的RGD(Arg-Gly-Asp )寡肽的
雙向凝膠熒光染色與成像實驗
試劑、試劑盒:提取液 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?洗滌液 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? 溶解液 ?
體內熒光成像技術的進展(一)
體內熒光成像技術利用一架靈敏的照相機,檢測活的整體小動物熒光團的熒光發射,從而獲得清晰的圖像。為了克服活組織的光子衰減,通常優先選取近紅外區(NIR)的長波發射熒光團,包括廣泛應用的小分子靛炭菁染料。NIR探針的數目最近隨著有機、無機和生物熒光納米顆粒的采用而不斷增加。在體內熒光成像領域,成像策略和
熒光成像技術的廣泛應用
當今生物醫學的發展已由傳統基于癥狀的治療模式,向以信息為依據的精準診療模式轉變,醫學影像技術的發展反映并引領著臨床醫學的進步。熒光成像技術具有檢測靈敏度高、無輻射危害等優點,在生物醫學領域具有廣泛的應用。 近日,中國科學院蘇州納米技術與納米仿生研究所研究員王強斌課題組接受《美國化學學會—納
德國研發熒光壽命成像顯微平臺-可對腫瘤邊緣精確成像
激光掃描熒光壽命成像顯微鏡(FLIM)是一種用于對生物系統成像的有效方法,即利用樣品中熒光團的衰變率差異來計算得出圖像。該顯微鏡通過使用熒光信號的壽命而不是強度來得出成像數據,能夠抵消厚樣品中的散射并且具有獨立于熒光團濃度的優點。但是迄今為止該技術的視野相對較小,通常小于一毫米。Becker&H
一文詳解生物發光成像和熒光成像的區別
當夜晚降臨,中國四川天臺山的螢火蟲,幻化成滿目“星空”的美景時,游弋在太平洋深處的發光水母們正散發著柔和的綠色光芒。同樣是美好“光”景,但實際上它們的發光原理截然不同。如同螢火蟲和發光水母一樣,活體光學成像技術也包括生物發光與熒光成像兩種。它們的區別在哪里?是否所有的活體成像設備,都能同時檢測生物發
Lightgate在熒光成像中去除葉綠體自發熒光的影響
Lightgate在熒光成像中去除葉綠體自發熒光的影響為了檢測Lightgate在熒光成像中去除葉綠體自發熒光的影響,Kodama Y.使用配備白激光和HyD檢測器的Leica TCS SP8 X對M. polymorpha植株中的熒光標記進行了對比鑒定。Lightgate能很好地去除葉綠素在黃色和