掠射X射線分析是近年來迅速發展的一門分析技術,在科學研究以及分析檢測和質量控制等生產領域都有著廣泛的應用。X射線分析技術具有試樣無損分析、制樣經濟方便、操作簡單、分析結果重現性好及精度高等優點,使得這項技術在薄膜特性分析、半導體材料及磁鐵材料表面檢測方面受到特別的青睞。本文在綜述了國內外掠射X射線熒光分析技術的研發和應用的基礎上,對掠出射X射線熒光技術在薄膜特性分析上的理論、裝置和實驗三方面進行了研究。 在理論研究方面,首先討論了軟X射線熒光產生的原子物理相關理論;其次根據洛倫茲互換定理,得出了掠出射和掠入射兩種熒光分析理論具有互換性的結論。介紹了掠射X射線與薄膜樣品作用時產生的干涉現象,給出了X射線雙光束干涉和多光束干涉產生極值的條件。最后,利用平穩位相方法建立了掠出射情況下薄層樣品產生的熒光強度和掠出射角的對應關系數學模型,推導了薄層樣品熒光強度理論計算公式,并以此為依據模擬計算得出了Cr、Fe、Ti和Ni等幾種以Si作......閱讀全文
《血液透析及相關治療用水》等90項醫療器械行業標準已經審定通過,現予以公布。其中,強制性醫療器械行業標準自2017年1月1日起實施,推薦性醫療器械行業標準自2016年1月1日起實施。 特此公告。 食品藥品監管總局 一、強制性行業標準(共14項) (一)YY 0572-201
X射線熒光光譜儀原理 X射線熒光光譜儀主要由激發源(X射線管)和探測系統構成。其原理就是:X射線管通過產生入射X射線(一次X射線),來激發被測樣品。 受激發的樣品中的每一種元素會放射出二次X射線(又叫X熒光),并且不同的元素所放
X熒光光譜儀的原理 當能量高于原子內層電子結合能的高能X射線與原子發生碰撞時,驅逐一個內層電子而出現一個空穴,使整個原子體系處于不穩定的激發態,激發態原子壽命約為 (10)-12-(10)-14s,然后自發地由能量高的狀態躍遷到能量低的狀態.這個過程
1.什么是XRF?XRF:X射線熒光光譜分析(X Ray Fluorescence) 人們通常把X射線照射在物質上而產生的次級X射線叫X射線熒光(X—Ray Fluorescence),而把用來照射的X射線叫原級X射線。所以X射線熒光仍是X射線。 一臺典型的X射線熒光(XRF)儀器由激發源(
X熒光光譜儀(XRF)是一種較新型的可以對多元素進行快速同時測定的儀器。在X射線激發下,被測元素原子的內層電子發生能級躍遷而發出次級X射線(即X熒光)。波長和能量是從不同的角度來觀察描述X射線所采用的兩個物理量。波長色散型X熒光光譜儀(WD-XRF)是用晶體分光而后由探測器接收經過衍射的特征X射線信
X熒光光譜儀原理儀器是較新型X射線熒光光譜儀,具有重現性好,測量速度快,靈敏度高的特點。能分析F(9)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確
⑴冶金分析的特點 冶金分析是指冶金生產過程中各物料的化學組成及其含量的分析。它對原料的選擇,在冶煉前的爐料計算,冶煉工藝流程的控制中,產品的檢驗,新產品的試制,以及冶金工廠中環保分析都是必不可少的。特點是:①在保證生產質量的前提下,分析速度要快,特別是分析;②冶金分析物料種類繁多,有固體
近日,日本理學宣布推出新一代理學NANOHUNTER II臺式全反射X射線熒光(TXRF)光譜儀,液體或固體表面高靈敏度痕量元素分析達到ppb水平。全反射X射線熒光光譜通過一種途徑使X射線入射光束剛好擦過樣品,來實現低背景噪音、高靈敏度的超微量元素測量。NANOHUNTER II臺式全反射X射線
對于電子薄膜材料研究,薄膜的微觀結構、成分和厚度是決定薄膜性能的一個關鍵因素。如何表征薄膜的微觀結構、成分和厚度也一直是薄膜研究領域的一個重要課題,尤其是應用無損表征方法。掃描電子顯微鏡配備X射線能譜儀分析技術(電子探針能譜)能夠觀察微觀形貌和分析薄膜的微區成分的同時,根據電子束的穿透深度可測量薄膜
實驗步驟 一、蛋白質印跡法 蛋白質印跡 (Western Blotting) 法是在混合的復合物中鑒定和定量特定蛋白質的一種有效且常用的方法 (Towbin et al. ,1979)。這一技術對固定在硝酸纖維素膜或聚偏二氟乙烯
紅外光譜樣品制備 紅外光譜是未知化合物結構鑒定的一種強有力的工具,尤其近幾年來各種取樣技術和聯用技術的迅速發展,使得它成為分析化學應用中最廣泛的儀器之一。 樣品要求: 1、氣體、液體(透明,糊狀)、固體(粉末、粒狀、片狀…)。 氣體樣品:采用氣體吸收池進行測試,吸收峰的強度可以通過調整氣
X熒光光譜儀的簡單介紹 x熒光分析已廣泛應用于材料、冶金、地質、生物醫學、環境監測、天體物理、文物考古、刑事偵察、工業生產等諸多領域,是一種快速、無損、多元素同時測定的分析技術,可為相關生產企業提供一種可行的、低成本的、及時的檢測、篩選
X熒光光譜儀是根據X射線熒光光譜的分析方法配置的多通道X射線熒光光譜儀,它能夠分析固體或粉狀樣品中各種元素的成分含量。 X射線熒光(XRF)能夠測定周期表中多達83個元素所組成的各種形式和性質的導體或非導體固體材料,其中典型的樣品有玻璃、塑料、金屬、礦石、耐火材料、水泥和地質物料等。凡
X熒光光譜儀是根據X射線熒光光譜的分析方法配置的多通道X射線熒光光譜儀,它能夠分析固體或粉狀樣品中各種元素的成分含量。 X射線熒光(XRF)能夠測定周期表中多達83個元素所組成的各種形式和性質的導體或非導體固體材料,其中典型的樣品有玻
用X射線照射試樣時,試樣可以被激發出各種波長的熒光X射線,需要把混合的X射線按波長(或能量)分開,分別測量不同波長(或能量)的X射線的強度,以進行定性和定量分析,為此使用的儀器叫X射線熒光光譜儀。由于X光具有一定波長,同時又有一定能量,因此,X射線熒光光譜儀有兩種基本類型:波長色散型和能量色散型。圖
1 X射線的產生 X射線本質上是電磁波,其波長范圍大致從0.01 nm 到 10 nm,與可見光(400—700 nm)不同,X 射線的短波長可以探測物質內部的精細結構,因此自從被倫琴發現以來就被用來觀測物質的內部結構。隨著人造 X射線光源的亮度和穩定性的提高,其應用范圍涵蓋物理、化學、生物、
X熒光光譜儀(XRF)是由激發源(X射線管)和探測系統構成。其工作原理是:X射線管通過產生入射X射線(一次X射線),來激發被測樣品。受激發的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的能量及數量。然后
一、X熒光光譜儀應用范圍X熒光光譜儀根據各元素的特征X射線的強度,也可以獲得各元素的含量信息。 近年來,X熒光光譜分析在各行業應用范圍不斷拓展,已成為一種廣泛應用于冶金、地質、有色、建材、商檢、環保、衛生等各個領域,特別是在RoHS檢測領域應用得zui多也zui廣泛。 大多數
X射線管產生入射X射線(一次X射線),激發被測樣品。 受激發的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。 探測系統測量這些放射出來的二次X射線的能量及數量。 然后,儀器軟件將探測系統所收集到的信息轉換成樣品中各種
水是地球人類及其它生物賴以生息繁衍的最基本物質之一。隨著近代人類社會的巨大進步和現代工農業的飛速發展,環境污染與生態的破壞已成為各國政府和學者面臨的重要問題,尤其是水資源與水安全問題持續受到人們廣泛關注。環境水體樣品來源多樣,基體復雜,元素含量范圍跨度大,大部分環境影響重要元素含量極低。建立準確、便
X熒光光譜儀由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線),激發被測樣品,產生X熒光(二次X射線),探測器對X熒光進行檢測。X熒光光譜儀主要用途X熒光光譜儀根據各元素的特征X射線的強度,可以 測定元素含量。近年來,X熒光光譜分析在各行業應用范圍不斷拓展,已成為一種廣泛應用于
X熒光光譜儀由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線),激發被測樣品,產生X熒光(二次X射線),探測器對X熒光進行檢測。受激發的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的
X熒光光譜儀(XRF)由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線),激發被測樣品。受激發的樣品中的每一種元素會放射出二次X射線,并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這些放射出來的二次X射線的能量及數量。然后,儀器軟件將探測系統所
X射線譜儀簡介編輯X射線譜儀設計有20路探測器,是此次載荷中探測器路數最多的系統,為有效預防多路探測器之間相互干擾,在硬/軟件設計中還專門設計了“隔離”探測器單元功能及對太陽監測器計數率的調閾指令,以提高探測器在軌長期工作的可靠性 [1] 。X射線譜儀指向月面,由16
X熒光光譜儀(XRF)由激發源(X射線管)和探測系統構成。X射線管產生入射X射線(一次X射線),激發被測樣品,產生X熒光(二次X射線),探測器對X熒光進行檢測。優缺點優點a) 分析速度快。測定用時與測定精密度有關,但一般都很短,10~300秒就可以測完樣品中的全部待測元素。b
高精度測量極微小部位的金屬薄膜厚度 精工電子納米科技有限公司(簡稱:SIINT,社長:川崎賢司,總公司:千葉縣千葉市)是精工電子有限公司(簡稱:SII,社長:新保雅文,總公司:千葉縣千葉市)的全資子公司,其主要業務是測量分析儀器的生產與
實驗步驟一、蛋白質印跡法蛋白質印跡 (Western Blotting) 法是在混合的復合物中鑒定和定量特定蛋白質的一種有效且常用的方法 (Towbin et al. ,1979)。這一技術對固定在硝酸纖維素膜或聚偏二氟乙烯 (PVDP) 膜上的蛋白質樣本進行非直接的檢測。在常規的蛋白質印跡中,蛋白
原理 (XRF)儀器由激發源(X射線管)和探測系統構成。X射線管產生入射X 射線(一次射線),激勵被測樣品。樣品中的每一種元素會放射出的二次X射線,并且不同的元素所放出的二次射線具有特定的能量特性。探測系統測量這些放射出來的二次射線的能量及數量。然后,儀器軟件將控測系統所收集的信息轉換成樣
如今,X熒光光譜儀技術已成功應用于環境、食物鏈、動植物、農產品、人體組織細胞及器官、生物醫學材料、組織細胞、醫學試劑、動植物器官、代謝產物中的無機元素測定。X熒光光譜儀可對固體、粉末、液體、懸浮物、過濾物、大氣飄塵、薄膜樣品等進行定性、定量分析,元素范圍13Al-92U,含量范圍ppb至100%,檢
拉曼光譜的原理及應用 拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本底而高質量的拉曼光譜以及體積小、容易使用的